
Brief course in R.

Sebastian E. Ramos-Onsins.
Centre for Research in Agricultural Genomics (CRAG)

November 11th, 2013

1

mailto:sebastian.ramos@cragenomica.es
http://www.cragenomica.es/

Contents

1 Basic Concepts to Start with R 3
1.1 Basic commands and operations . 3

1.1.1 Help . 3
1.1.2 R as a calculator . 3
1.1.3 Keeping the data . 4

1.2 Interesting functions in R . 7
1.2.1 Commands for general purposes . 7
1.2.2 Some algorithmic, statistical and plotting commands 9
1.2.3 A bit about programming commands . 11

2 References 13

2

1 Basic Concepts to Start with R

R is an application used to perform a large number of statistical, mathematical, graphics and
other operations that are useful for statistical analysis. The application shows an environment
where the user can introduce commands (yes, it’s a command line-based application), functions
and libraries of functions. The user can also introduce data easily and obtain high quality output
plots.
R is a free software. You can download it from http://www.r-project.org. There is a large
number of additional functions that can be mainly downloaded from http://cran.r-project.org.
R has an extended help included in the program, although it is not so explicative for beginners.
A number of manuals are available for people interested. For example: ”Introductory Statistics
with R” (Dalgaard, 2002) or ”A Handbook of Statistical Analysis Using R” (Everitt and Hothorn,
2006).
When you open R, a command-line window appears. You can write directly any command and
the result will be output after pressing ”return”. You can also open a editor of R scripts to keep
all the commands you write (see the Menu). This option is very useful for making functions and
save it in a file with ”.r” extension. Then, these functions (or a number of commands in a R file)
can be used when you need. You simply have to open the file and copy all what you want inside
R command-line window.

1.1 Basic commands and operations

1.1.1 Help

The command help(function) and apropos(”any name”) are basic functions that allow the
user to find and use correctly the commands or functions in R. Using the command help.start()
you can get access to the complete documentation help menu.

> apropos("norm")

[1] "dlnorm" "dnorm" "norm"

[4] "normalise" "normalize spectrum" "normalizePath"

[7] "plnorm" "pnorm" "qlnorm"

[10] "qnorm" "qqnorm" "qqnorm.default"

[13] "rlnorm" "rnorm" "spnorm"

[16] "sum spectra norm"

> help(rnorm)

1.1.2 R as a calculator

Using R as a calculator. Sum, divide, square root, power...

> 3 + 45

[1] 48

> 48 * 1.2

[1] 57.6

> sqrt(49)

[1] 7

> 8 ̂ 34

[1] 5.070602e+30

> log(23*exp(4))

[1] 7.135494

3

http://www.r-project.org
http://cran.r-project.org

1.1.3 Keeping the data

It is possible to keep values in variables, not only scalars but also vectors, matrices, or even lists
of values.

(i) Keep values in a variables: Example:

> x <- 45

> y <- 3.4

> z <- x ̂ 2 + 2*y - x/y

> z

[1] 2018.565

(ii) Keep data in vectors, matrices or arrays: Using the command c(value,values,...) is pos-
sible to keep values in a vector. Example:

> f <- c(1:4)

> f

[1] 1 2 3 4

> g <- c(3,5,6)

> g

[1] 3 5 6

> h <- c(f,g)

> h

[1] 1 2 3 4 3 5 6

Exercise 1.1.3.ii: Do an arithmetical sum of two vectors

Using the form matrix(values,nrow=dim row,ncol=dim col) or the generic command
array(values,dim=c(size dim1,size dim2,size dim3,...)) it is possible to work with
large matrices of values. A matrix must have a unique type of variable, that is, the values
are numerical or categorical, but not both at the same time (if you include a letter in a
matrix with numbers, all the numbers will be treated as characters).
Example:

> m <- matrix(,nrow=4,ncol=3)

> m

[, 1] [, 2] [, 3]
[1,] NA NA NA

[2,] NA NA NA

[3,] NA NA NA

[4,] NA NA NA

> m <- matrix(0,nrow=4,ncol=3)

> m

[, 1] [, 2] [, 3]
[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

[4,] 0 0 0

> m <- matrix(c(1:12),nrow=4,ncol=3)

> m

[, 1] [, 2] [, 3]
[1,] 1 5 9

4

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> m[2, 3]
[1] 10

> m <- matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)

> m

[, 1] [, 2] [, 3]
[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

> m[2, 3] #show the value in row 2, column 3

[1] 6

> r <- array(c(1:12),dim=c(2,3,2))

> r

, , 1

[, 1] [, 2] [, 3]
[1,] 1 3 5

[2,] 2 4 6

, , 2

[, 1] [, 2] [, 3]
[1,] 7 9 11

[2,] 8 10 12

> r[2, 3, 2]
[1] 12

> r[2, , 1]
[1] 2 4 6

> r[2,−2, 1]
[1] 2 6

(iii) The data.frame and the list. The data frame is a set of values (numerical or categorical)
that are included in a unique frame and are grouped in a matrix frame. The main difference
with a matrix is the possibility to work with both (numerical and categorical) in the same
variable. A data frame must have the same number of rows for each defined column. The
command is data.frame(name var=values,...).
Example:

> d <- data.frame(x=0,y=1:5,cat=c("type1","type2","type1","type1","type2"))

> d

x y cat

1 0 1 type1

2 0 2 type2

3 0 3 type1

4 0 4 type1

5 0 5 type2

> d$y

[1] 1 2 3 4 5

> d$cat

[1] type1 type2 type1 type1 type2

5

Levels: type1 type2

> d$x[1]
[1] 0

> d$y

[1] 1 2 3 4 5

> d$y>3

[1] FALSE FALSE FALSE TRUE TRUE

> d$cat[3]
[1] type1

Levels: type1 type2

> d[2,]
x y cat

2 0 2 S

Exercise 1.1.3.iii: Select those values of ”cat” that have a value of ”y” smaller than 4.

A list is any group of variables that have no restriction. Any kind of varible can be included,
no matter if the number of rows are different or the variables are categorical or numerical.
It is useful for packaging a number of values and variables with a unique name. Example:

> l <- list(r=r,f=f,d=d)

> l

$r

, , 1

[, 1][, 2][, 3]
[1,] 1 3 5

[2,] 2 4 6

, , 2

[, 1][, 2][, 3]
[1,] 7 9 11

[2,] 8 10 12

$f

[1] 1 2 3 4

$d

x y cat

1 0 1 A

2 0 2 S

3 0 3 N

4 0 4 Q

5 0 5 E

Finally, you can use the function class(variable name) to know what is the the type of the
variable you are interested in. Example:

> f <- c(1:10)

> g <- f*pi

> class(f)

[1] "integer"

> class(g)

6

[1] "numeric"

> h <- c(f,g)

> class(h)

[1] "matrix"

1.2 Interesting functions in R

There is a large number of functions in R. Here I only introduce you those functions that I
consider useful and interesting for this short practical course.

1.2.1 Commands for general purposes

getwd() setwd() library() source() read.table() fread() write.table() which() cbind()
rbind() length() sprintf()

(i) getwd(): Shows the working directory. All files you load or save will be in this directory if
it is not specified. Example:

> getwd()

(ii) setwd(): Changes the working directory to the one you specify. Example:

> f <- "/Users/sebas/Desktop/PracticalCoal"

> setwd(f)

(iii) library(): This command is necessary to load packages of functions. Example:

> library(datasets)

(iv) source(): This is useful to load specific command from a file.Example:

> source("./practica funciones.R")

(v) write.table(): This is useful to save data or results to a file.

Usage:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ", eol = "\n",
na = "NA", dec = ".", row.names = TRUE, col.names = TRUE, qmethod = c("escape",

"double"))

x is the variable you want to write in the file. file is the name of the file, between quotes.
With append is possible to add more data to the file without erasing the content (T) or
not (F). quote put or not quotes to the values of the variable. sep indicates the spacing
character. eol indicates the character to include at end of the row in a table. na is useful
in case Non Available data is included. row.names indicates if you want the name of the
rows are written in the file.
Example:

> library(datasets)

> cars[1 : 5,]
speed dist

1 4 2

2 4 10

3 7 4

7

4 7 22

5 8 16

> write.table(x=cars,file="data example.txt",append=F,

quote=F,eol="\n",dec=".",row.names=F)

(vi) read.table(): Include data from a file.

Usage:

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".", row.names,

col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows

= -1, skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white =

FALSE, blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush

= FALSE, stringsAsFactors = default.stringsAsFactors(), fileEncoding = "",

encoding = "unknown")

Example:

> data.cars <- read.table(file="data example.txt",header=T)

> data.cars[1 : 5,]
speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

(vii) fread(): Read data from a file much faster than read.table. You have to install the library
”data.read” to use it.

(viii) which(): Indicates the position of the value that you are looking for. Example:

> data.cars$dist > 50

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

[25] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

[37] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[49] TRUE TRUE

> which(data.cars$dist > 50)

[1] 22 23 26 33 34 35 38 41 42 43 44 45 46 47 48 49 50

(ix) cbind(): Merge the columns of two or more variables in the order specified. Example:

> g <- data.cars$speed

> speed2 <- cbind(g,2*g)

> speed2[1 : 5,]
g

[1,] 4 8

[2,] 4 8

[3,] 7 14

[4,] 7 14

[5,] 8 16

(x) rbind(): Merge the rows of two or more variables in the order specified.

8

(xi) length(): Gives the size of a vector. Example:

> g <- data.cars$speed

> length(g)

[1,] 50

(xii) sprintf(): shows text that can include the values of other variables. Example:

> a <- c(1.4,3.4)

> t <- c("variable","answer")

> w <- sprintf("The name of the %s is %f, and the %s is %f",t[1],a[1],t[2],a[2])
> w

1.2.2 Some algorithmic, statistical and plotting commands

mean() var() apply() quantile() sample() runif() qexp() plot() hist() pdf()

(i) mean(), var(), sd(): Calculate the mean (var or standard deviation, sd) for the values you
include. In case of var, when several columns are included, it also calculates de covariance.
An interesting option is the possibility to include the ”NA” values (na.rm=F) or exclude
from the analysis (na.rm=T). Example:

> mean(data.cars$dist,na.rm=T)

[1] 42.98

> var(data.cars$dist,na.rm=T)

[1] 664.0608

> var(data.cars,na.rm=T)

speed dist

speed 27.95918 109.9469

dist 109.94694 664.0608

(ii) apply(): This command allows to use a function over the rows, the columns or both in a
matrix.

Usage:

apply(X, MARGIN, FUN, ...)

Arguments

X is an array, including a matrix.

MARGIN is a vector giving the subscripts which the function will be applied

over. 1 indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.

FUN the function to be applied (e.g., sum, var ...)

... optional arguments to FUN.

Example:

> apply(data.cars,2,mean)

speed dist

15.40 42.98

(iii) sample(): This function pick a number of elements from a vector, with or without replace-
ment. Useful for bootstrap resampling. Example:

9

> # 100 Bernoulli trials

> b <- sample(c(0,1), 100, replace = TRUE)

> mean(b)

[1] 0.49 > var(b)

[1] 0.2524242

(iv) runif(), rpois(), rnorm(), rexp(): Give a number of values following a Uniform (Poisson,
or other) distribution. Example:

> u <- runif(n=1000,min=-2,max=2)

> p <- rpois(n=1000,lambda=10)

> n <- rnorm(n=1000,mean=0,sd=1)

> apply(cbind(u,p,n),2,mean)

u p n

0.04939483 10.07100000 0.01193145

> apply(cbind(u,p,n),2,var)

u p n

1.317368 9.373332 0.948162

(v) qpois(), qnorm(), qexp(): Starting from the density distribution, we pick a value from
the distribution when the P -value is provided. Example:

> t rate <- 1/1000

> uu <- runif(1)

> uu

[1] 0.7117541

> t1 <- qexp(p=uu,rate=t rate)

> t1

[1] 1242.9414

(vi) plot: Plot elements of variables within a graphical display in MANY different ways. Here
we only show a simple 2D plot of one variable versus another. Example:

> x <- rnorm(1000)

> y <- 2*x*x + rnorm(1000)

> plot(x,y,xlab="x=Normal",ylab="y=2*x ̂ 2+Normal")

(vi) pdf : You can send the results to a pdf file. All the plot ouputs will be sent to the defined
pdf. the file is finally created with the command dev.off():

> pdf(file="Example plot.pdf",height=6,width=10)

> plot(x,y,xlab="x=Normal",ylab="y=2*x ̂ 2+Normal")

> dev.off()

(vii) quantile(): Calculate the quantiles for the distribution you include. A vector of proba-
bilities can be specified. Example:

> n <- rnorm(1000)

> quantile(n)

0% 25% 50% 75% 100%

-2.96587439 -0.64760592 0.02209920 0.64540246 2.93180125

> quantile(n,probs=c(0.025,0.975)

2.5% 97.5%

-1.954497 1.887044

10

-3 -2 -1 0 1 2 3

0
5

10
15

x=Normal

y=
2*
x^
2+
N
or
m
al

Figure 1: Example of the command plot.

(viii) hist(): Shows the histogram for a vector. Only few options are shown. n is the data,
breaks are the number of segments to divide the data, freq shows the absolute number of
values in the y-axis (T) or instead the proportion (F). Example:

> u <- runif(n=10000,min=-2,max=2)

> p <- rpois(n=10000,lambda=10)

> n <- rnorm(n=10000,mean=0,sd=1)

> par(mfrow=c(1,3))

> hist(u,breaks=30,main="Uniform. min=-2, max=2",freq=F)

> hist(p,breaks=30,main="Poisson. lambda=01",freq=F)

> hist(n,breaks=30,main="Normal",freq=F)

Uniform. min=-2, max=2

u

D
en
si
ty

-2 -1 0 1 2

0.
00

0.
10

0.
20

0.
30

Poisson. lambda=10

p

D
en
si
ty

5 10 15 20

0.
00

0.
04

0.
08

0.
12

Normal

n

D
en
si
ty

-4 -2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2: Example of the command hist.

1.2.3 A bit about programming commands

function() for() while() if()

(i) function(): This command is useful to build a list of commands or orders that are interesting
to run together (and usually many times). The function can give a number of results at
the end. All the commands/orders in the function are within { }. Functions are usually
written in a separate file with extension .r and loaded using source(”file.r”). Example:

#Normalise function

#Function that normalise a value(s) ’x’ in relation to a distribution ’y’

11

normalise <- function(x,y) {
result <- (x-(mean(y,na.rm=T)))/sqrt(var(y,na.rm=T))

result

}

> ns <- rnorm(n=1000,mean=10,sd=23)

> c(mean(ns),sd(ns))

[1] 10.89364 23.63404

> nn <- normalise(ns[1:100],ns)

> c(mean(nn),sd(nn))

[1] -0.1552580 0.9082879

(ii) for(): Programming a loop. A value is going from the first to the last element that is

indicated. Example: we want to calculate the value an =
∑n−1

i=1
1
i

an <- 0

n <- 20

for(i in 1:(n-1)) {
an <-an + 1/i

}
an

[1] 3.54774

(iii) while(): A conditional loop. this loop is only running if the condition inside the parenthesis
is true. Example: we will calculate the same value an

an <- 0

n <- 20

i <- 1

while(i < n) {
an <- an + 1/i

i <- i + 1

}
an

[1] 3.54774

(iv) if()/else: Conditional function. If the condition inside parenthesis is true, run the next
line, otherwise skip this line (or section within { }) and go to else { } (if defined). Example:

tcoal <- 0

if(runif(1) <= 0.95) {
tcoal <- 1

}
else {

tcoal <- -1

}
tcoal

[1] 1

12

2 References

Dalgaard, P. (2002). Introductory Statistics with R. Springer.

Everitt, B. and T. Hothorn (2006). A Handbook of Statistical Analysis Using R. Chapman and
Hall/CRC.

13

	Basic Concepts to Start with R
	Basic commands and operations
	Help
	R as a calculator
	Keeping the data

	Interesting functions in R
	Commands for general purposes
	Some algorithmic, statistical and plotting commands
	A bit about programming commands

	References

