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1 Objectives

In these sessions, the objective is the understanding of the theoretical bases and algorithms of
Molecular Evolution and Phylogeny. We will learn basic concepts of Molecular Evolution and
Phylogeny by mean of bioinformatics, that is, using computational methods to study and simu-
late evolutionary processes in molecules (focused on DNA sequences), and also the relationships
between individuals or species.

You can review and obtain additional information from some general books, like Higgs and
Attwood (2005) as well other more specifics, like the excellent book of Yang (2006).
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2 Few Basic concepts of Population Genetics useful for
Phylogeny

2.1 Mutation

The heritable information that contains the molecules of DNA can be modified by mutation
events. The mutational process occurs randomly in a position of the strain with a given proba-
bility each generation. This random process can be modeled using a poisson distribution. Let’s
simulate a random process using the R package: Open the file ”Bioinf PopGenetics.R”.

#In a population, the number of mutations depend on the mutation rate and the number of

individuals (and also the number of nucleotides per individual)

mu <- 1e-3 #mutations per generation per position

N <- 1e3 #individuals in the population

L <- 1e1 #positions per individual

expected.m <- mu * N * L

expected.m # is the average number of mutations in the population per generation in the

region of size L

#mutation is a random process, therefore for each generation we will have a random value

centered on expected.m

m <- rpois(n=1,lambda=mu*N*L)

m #will be for a specific case

2.2 Drift to Fixation

A mutation appear in a single individual and the fate of the mutation over generations is uncer-
tain. A new mutation can disappear in the next generation with a high probability, depending on
the effective population size (1−1/Ne) or increase in frequency until fixation after many genera-
tions (given the change of frequencies by drift). Let’s simulate a process of drift to fixation or loss:

#first a function to calculate the fixation time:

calculate.fixation.time.p <- function(initial.p,N,max.generations) {
plotf <- array(0,dim=c(max.generations))

p <- initial.p

g <- 1

plotf[g] <- p

while(p > 0 && p < 1 && g < max.generations) {
Pop <- rbinom(n=N,size=1,prob=p)

p <- sum(Pop)/N

g <- g + 1

plotf[g] <- p

}
list(end.p=p,generations=g,plot.freqs=plotf)

}

# Then we start simulation

par(mfrow=c(1,3))

it <- 1e4

max.g <- 1e4

plotf <- array(0,dim=c(max.g))

plot(x=c(1:max.g),rep(0,max.g),ylim=c(0,1),type="l")

dist.fix <- array(0,dim=c(it))

n.fix <- 0

dist.los <- array(0,dim=c(it))
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2.3 Selection and Fixation

n.los <- 0

for(i in 1:it) {
nm <- 1 #given a mutation, frequency in the initial population

p <- nm/N

fix.results <- calculate.fixation.time.p(initial.p=p,N=N,max.generations=max.g)

plotf <- fix.results$plot.freqs

g <- fix.results$generations

p <- fix.results$end.p

if(p == 1) {
lines(x=c(1:g),y=plotf[1:g],type="l",col="black")

dist.fix[n.fix+1] <- g

n.fix <- n.fix + 1

}
if(p == 0) {

lines(x=c(1:g),y=plotf[1:g],type="l",col="yellow")

dist.los[n.los+1] <- g

n.los <- n.los + 1

}
}

hist(dist.fix[1:n.fix],breaks=30,main=sprintf("dist.fix: n=%d; mean=%.3f", n.fix,mean(dist.fix[1:n.fix])),
freq=FALSE, xlim=c(0,max.g))

abline(v=mean(dist.fix[1:n.fix]),col="black")
n.fix

hist(dist.los[1:n.los],breaks=30,main=sprintf("dist.los: n=%d; mean=%.3f", n.los,mean(dist.los[1:n.los])),
freq=FALSE, xlim=c(0,max.g))

abline(v=mean(dist.los[1:n.los]),col="yellow")
n.los

#proportion of fixed mutations

n.fix/(n.fix+n.los) #1/N under neutrality (total 1/N * it)

#number of generations to fix mutations

mean(dist.fix[1:n.fix]) #2*N under neutrality

2.3 Selection and Fixation

The speed and number of fixed mutations are affected by several processes, like the population
size, the time generation but also selective events that increase or slow down the process of fix-
ation. Let’s simulate a selective process. In this case, we simulate that the mutation we study
has some advantage over the wild variant that is present initially. Following classical population
genetics theory, we assign a value 1 +s of selection coefficient to this new variant. Thus, we have

Individuals Wild (Np) Mutant (Nq)
Next generation Np/w Nq(1 + s)/w

where w = p+ q(1 + s) is the total frequency and p/w and q(1 + s)/w are the frequencies of the
wild and new variant at the next generation, respectively. In this case we modify the function
that calculates the fixation time to consider selection: Highlighted in red are the modifications
in respect to the previous function:

calculate.fixation.time.p.selection <- function(initial.p,N,max.generations,s=s) {
plotf <- array(0,dim=c(max.generations))
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2.3 Selection and Fixation

p <- initial.p

g <- 1

plotf[g] <- p

while(p > 0 && p < 1 && g < max.generations) {
p <- p*N*(1+s)/(p*N*(1+s) + (N-p*N))

Pop <- rbinom(n=N,size=1,prob=p)

p <- sum(Pop)/N

g <- g + 1

plotf[g] <- p

}
list(end.p=p,generations=g,plot.freqs=plotf)

}

Figure 1: First, time to fix a selective mutation for N = 1000, s = 0.05 (in black) and to loss (in green). Second,
distribution of the time of fixation events, Third, distribution of the time of loss events.

If we do a simulation using s = 0.05 and using the same parameters we used before the results
are different (see Figure 1). In fact, the fraction of fixed mutations under the effect of strong
selection (|Nes| > 1, |s| << 1) is approximately (1− e(−2s))/(1− e(−2Nes)) when Nes� 1, while
under no selection is 1/Ne.
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3 Mutational Models and Sequence Evolution

We are interested in studying the information that is contained in the DNA and the differences
that are observed between individuals or organisms. Therefore, we will need to observe the data
and consider a model to explain this data. Let’s start with a simple two sequences of arbitrary
length (1000 nt.). How many differences are between two sequences? How many differences we
expect?. The first question seems easy to answer, but the second question needs the formulation
of a model in order to have a better understanding of what happened.

Speciation Time

μTμT

T

Divergence Time of Divergence

Speciation Time

Coalescent Time ∝ f(Nanc). 
P(t) = 1/2Nanc * exp(-t/2Nanc)

Tsp

Figure 2: Representation of the divergence between two lineages. From the present to the past, a speciation
time means the time since the species (or populations) split, while the time from the speciation time to the join
of the branches represent the time the two lineages (not the species) diverged, which is a stochastic process. Here
the equation is expressed for a diploid population.

Under the simplest model of constant mutation across generations, the number of expected
mutations between two lineages are proportional to the number of generations since their common
origin, That is,

m = 2µTg (1)

where m is the total number of mutations, Tg is the number of generations and µ is the mutation
rate of the region per generation. The 2 means that we are counting from both sequences to the
ancestor Tg ago. Under the neutral model, the substitution rate (λ) is equal to the mutation
rate, as we observe in the previous section. Then, changing the terms we have d = 2λTg, where
d is the number of substitutions between lineages.
Here we assume a infinite length sequence, a constant mutation rate across time, across lineage
(implicitly that the time of generations is equal across lineages) and across sequence regions.
Note also that Tg is not the time of split (or speciation) between two populations (or species),
but the time of split between these two sequences, which would be larger than the split between
populations. After speciation, the lineages coalesce some time afterwards, following a stochastic
process that depends on the ancestral population size. Therefore, different regions in the genome
may have relative different divergences.
Open the file ”Bioinf Molevol.R”and run the R commands following this section.

3.1 DNA sequence has ”only” four different states (nucleotides)

Although we assume this simple model, we have to consider the fact that a DNA sequence
contains four different nucleotides (A,C,G,T). In a finite length sequence, the mutations can
accumulate over the same positions, and the mutations may revert to the ancestral state. Let’s
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3.2 The Jukes and Cantor model for correction of substitutions

simulate a sequence first:

#Let’s generate a sequence:

Tnt <- c("A","C","G","T")

L <- 100

seq <- sample(x=Tnt,size=L,replace=TRUE,prob=c(0.25,0.25,0.25,0.25))

seq

#How many SUBSTITUTIONS we can see and how many substitutions really happened between 2

sequences that diverged G generations ago?

seq.ancestral <- seq

subst.rate = mu <- 1e-6 #assumption under neutrality: rate of substitutions is equal to

mutation rate

G <- 1e6 #number of generations to the common ancestor

n.subst.lineage.1 <- rpois(n=1,lambda=subst.rate * L * G)

n.subst.lineage.1

n.subst.lineage.2 <- rpois(n=1,lambda=subst.rate * L * G)

n.subst.lineage.2

#Total mutations between the two sequences

n.subst.lineage.1 + n.subst.lineage.2

3.2 The Jukes and Cantor model for correction of substitutions

What is the probability that a given nucleotide (ex. A) mutate to another (ex. C)? We will
use the simplest mutational model where each nucleotide has the same probability to mutate to
another:

#we use a rate matrix for all combinations of mutations:

Q <- matrix(1/3,ncol=4,nrow=4,dimnames=list(c("A","C","G","T"),c("A","C","G","T")))

for(x in 1:4) {Q[x,x] <- 0; Q[x,x] <- -sum(Q[x,])}
Q #is the Substitution Rate matrix

3.2.1 The number of differences under the JC model

Let’s calculate how many differences we really observe when compare two sequences assuming
the Jukes and Cantor Model. We construct first a function:

substitutions.on.sequence <- function(seq,substitutions,Q,Tnt) {
#seq is a vector of symbols (eg., A, T, A, G, C ...etc.)

#substitutions is the total number of substitutions

#Q is the substitution rate matrix (c x c)

#Tnt is a vector of C values containing the possible symbols in the seq

seq1 <- seq

len <- length(seq)

#where the substitutions fall on seq

position.substitution <-sample(c(1:len),size=substitutions,replace=TRUE)

number.symbols <- c(1:length(Tnt))

for(ps in position.substitution) {
nt <- which(Tnt==seq1[ps]) #which symbol is in seq[ps]

symbol <- number.symbols[-nt] #count the possible variants (not the original)

seq1[ps] <- sample(Tnt[-nt],1,prob=Q[nt,-nt]) #assign the new nucleotide

}
seq1 #the output is the new vector of symbols after including substitutions

}
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3.2 The Jukes and Cantor model for correction of substitutions

The number of differences observed can be contrasted with the number of real mutation occurred:

#The observed differences are:

seq.lineage.1 <- substitutions.on.sequence(seq.ancestral,n.subst.lineage.1,Q,Tnt)

seq.lineage.2 <- substitutions.on.sequence(seq.ancestral,n.subst.lineage.2,Q,Tnt)

#The ancestral and new sequences:

seq.ancestral

seq.lineage.1

seq.lineage.2

#the number of observed and real differences differences:

Diff <- matrix(0,nrow=3,ncol=2,dimnames=list(c("1.vs.2","anc.vs.1","anc.vs.2"),c("OBS","REAL")))

Diff[1,1] <- sum(seq.lineage.1 != seq.lineage.2)

Diff[2,1] <- sum(seq.ancestral != seq.lineage.1)

Diff[3,1] <- sum(seq.ancestral != seq.lineage.2)

Diff[1,2] <- n.subst.lineage.1 + n.subst.lineage.2

Diff[2,2] <- n.subst.lineage.1

Diff[3,2] <- n.subst.lineage.2

Diff

3.2.2 How can we infer the time of divergence using the observed differences?

The relation between the observed divergence (number of observed differences divided by the
total positions) and the real divergence is determined by the following equation:

d = −3

4
ln(1− 4

3
D) (2)

where D is the observed divergence and d is the corrected (”real”) divergence. This equation
is obtained from the following reasoning: considering two sequences that diverged t generations
ago, and we have q proportion of sites that are identical, the substitution rate per generation is λ.
The proportion of sites that are invariant the next generation is qt+1 = qt(1−2λ) + (1− qt)2/3λ,
in relation to sites that at generation t were equal (qt) or different (1 − qt) respectively. If we
put together qt+1 − qt = dq

dt = 2/3λ − 8/3qλ and solving the differential equation, we obtain

p = 1 − q = 3/4(1 − e−8/3λt), which is also interpreted as the probability to have a variant
position at time t. Finally, substitute λt = d/2 and we obtain the equation 2.

First calculate the theoretical curves of the relationship between the observed divergence and
the real divergence (or the time in generations):

subst.rate <- 1e-6

par(mfrow=c(1,1))

G <- seq(from=1e3,to=1e6,by=(1e6-1e3)/29) #we subset 30 different divergence times

y1 <- seq(from=0,to=2*subst.rate*G[30],by=2*subst.rate*G[30]/29)

plot(x=2*G,y=y1,ylim=c(0,2),type="l",col="red",xlab="Time",ylab="Divergence")

y2 <- c(3/4-3/4*exp(-4/3*subst.rate*2*G)) #theoretical curve

lines(x=2*G,y=y2,ylim=c(0,2),type="l",col="black")

Let’s do the calculation of observed versus real number of substitutions:

#Simulate a new sequence of length 1000

L <- 1e3

seq.ancestral <- sample(x=Tnt,size=L,replace=TRUE,prob=c(0.25,0.25,0.25,0.25))

#Jukes and Cantor rate matrix

Q.JC <- matrix(1/3,ncol=4,nrow=4,dimnames=list(c("A","C","G","T"),c("A","C","G","T")))

for(x in 1:4) Q.JC[x,x] <- 0; Q.JC[x,x] <- -sum(Q.JC[x,])
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3.3 Including more realistic parameters

#calculate divergence for different times (contained in the G vector)

D.obs <- array(0,30)

D.real <- array(0,30)

i <- 1

for(g in G) {
n.subst.lineage.1 <- rpois(n=1,lambda=subst.rate * L * g)

n.subst.lineage.2 <- rpois(n=1,lambda=subst.rate * L * g)

seq.lineage.1 <- substitutions.on.sequence(seq.ancestral,n.subst.lineage.1,Q.JC,Tnt)

seq.lineage.2 <- substitutions.on.sequence(seq.ancestral,n.subst.lineage.2,Q.JC,Tnt)

D.obs[i] <- sum(seq.lineage.1 != seq.lineage.2)/length(seq.ancestral)

D.real[i] <- (n.subst.lineage.1 + n.subst.lineage.2)/length(seq.ancestral)

i <- i + 1

}
lines(x=2*G,y=D.obs ,type="p",col="black")

lines(x=2*G,y=D.real,type="p",col="red")

legend("topleft",legend=c("Real","Observed"),text.col=c("red","black"))
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Figure 3: First, the observed (black dots) and real (red dots) divergence and their adjustment to predictions
(lines). Second, linear relationship between corrected divergence and real divergence.

3.3 Including more realistic parameters

A number of models can be constructed taking into account more parameters to estimate the cor-
rected divergence, as for example differences in the nucleotide proportion, different substitution
rate for each type of mutation and also heterogeneity across the sequence length.

3.3.1 The HKY model: adding differences in Ts/Tv and in the frequency of nt.

Here we study the model HKY (Hasegawa, Kishino and Yano), where it is considered the different
frequencies of nucleotides in the sequence as well as the possibility to have different substitution
rate in transitions and transversions. Let’s calculate the transition matrix using the HKY model
for a given parameters:

10



3.3 Including more realistic parameters

Figure 4: First, Transition matrix between the different nucleotide substitutions. Second, figure showing a
number of different models taking into account different number of parameters, modified from Posada and Crandall
(2001). See also the powerful software jModelTest2 (Darriba et al., 2012) .

#for example:

p.A <- 0.55

p.C <- 0.06

p.G <- 0.36

p.T <- 1- (p.A + p.C + p.G)

p.S <- 0.75

p.V <- 1 - p.S

Q.HKY <- c(0, p.C*p.V, p.G*p.S, p.T*p.V, p.A*p.V, 0, p.G*p.V, p.T*p.S, p.A*p.S, p.C*p.V

,0 , p.T*p.V, p.A*p.V, p.C*p.S, p.G*p.V, 0)

Q.HKY <- matrix(Q.HKY,ncol=4,nrow=4,byrow=TRUE,dimnames=list(c("A","C","G","T"), c("A","C","G","T")))

for(x in 1:4) Q.HKY[x,x] <- 0; Q.HKY[x,x] <- -sum(Q.HKY[x,])

Q.HKY #Substitution rate matrix for this specific parameters

3.3.2 Including heterogeneity across the sequence

The divergence can be wrongly corrected if we do not account with the possibly heterogeneity
across the sequence length. For example, in case having regions with coding and intronic regions,
the coding positions can be much more restricted to accumulate variants. Thus, the total posi-
tions that can ”freely” change are smaller, and therefore the total positions we should consider
for correcting the divergence is smaller. The consequence is that the correction is underestimated
and we will fail to obtain the correct divergence.

First we do a function that consider invariant positions (positions that never have mutation).
Highlighted in red are the R code that has been modified in relation to the previous function
considered in the previous section:
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3.3 Including more realistic parameters

#Function: The number of mutations accumulate over the sequence with invariant positions:

substitutions.on.sequence.plusI <- function(seq,I,substitutions,Q,Tnt) {
#seq is a vector of symbols (eg., A, T, A, G, C ...etc.)

#I is the ratio of invariant positions

#substitutions is the total number of substitutions

#Q is the substitution rate matrix (C x C)

#Tnt is a vector of C values containing the different symbols in the seq

seq1 <- seq

len <- floor(length(seq)*(1-I))

#where the substitutions fall on seq

position.substitution <- floor(runif(n=substitutions,min=1,max=len))

number.symbols <- c(1:length(Tnt))

for(ps in position.substitution) {
nt <- which(Tnt==seq1[ps]) #which variant is in seq[ps]

symbol <- number.symbols[-nt] #count the possible variants (not the original)

seq1[ps] <- sample(Tnt[-nt],1,prob=Q[nt,-nt]) #assign the new nucleotide

}
seq1 #the output is the new vector of symbols after including substitutions

}

We now consider that we have heterogeneity in the positions and we model that effect using
a gamma distribution. The gamma distribution can have very different shapes and it has two
parameters, the shape (α) and the scale (β). Changing these parameters we can have Normal-
like distributions to Exponential-like distributions. The mean of the gamma distribution is
E(x) = α/β and variance var(x) = α/β2. If we fix β = α we have a distribution where E(x) = 1
and var(x) = 1/α, so we can model the heterogeneity using a single parameter. For example,
for the case of three different scale values of 100, 1 and 0.1 we have the following distributions:

par(mfrow=c(1,3))

par.gamma <- c(100,1,0.01)

for(i in 1:3) {
alpha <- par.gamma[i]

beta <- alpha

d <- rgamma(n=10000,shape=alpha,rate=beta)

text.plot <- sprintf("Gamma distibution\nmean=%.2f, var=%.3f",mean(d),var(d))

hist(d,main=text.plot)

}
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Figure 5: First, with shape=100 the distribution is very narow, almost no heterogeneity. Second, with shape=1
the distribution is an exponential like. third, shape=0.1 gives many 0 values close to zero and few with very high
values.

To simulate a process containing heterogeneity modeld with a gamma distribution we modify
the previous function. Highlighted in red are the modifications:
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3.3 Including more realistic parameters

#Function: The number of mutations accumulate over the sequence with invariant positions:

#and also a variable substitution rate given by a gamma distribution:

substitutions.on.sequence.plusI.Gamma <- function(seq,I,Gshape=0,substitutions,Q,Tnt) {
#seq is a vector of symbols (eg., A, T, A, G, C ...etc.)

#I is the ratio of invariant positions

#Gshape is the parameter shape=scale in a gamma distribution

#substitutions is the total number of substitutions

#Q is the substitution rate matrix (C x C)

#Tnt is a vector of C values containing the different symbols in the seq

seq1 <- seq

len <- floor(length(seq)*(1-I))

#including gamma:

if(Gshape > 0) {
position.substitution <- array(,substitutions)

pg <- rgamma(n=len,shape=Gshape,rate=Gshape) #each position has a value

wt <- pg/sum(pg) #each position has a weight according to the gamma distribution

#sample each position according its weight

position.substitution <- sample(c(1:len),size=substitutions,replace=TRUE,prob=wt)

} else {
#where the substitutions fall on seq

position.substitution <- floor(runif(n=substitutions,min=1,max=len))

}
number.symbols <- c(1:length(Tnt))

for(ps in position.substitution) {
nt <- which(Tnt==seq1[ps]) #which variant is in seq[ps]

symbol <- number.symbols[-nt] #count the possible variants (not the original)

seq1[ps] <- sample(Tnt[-nt],1,prob=Q[nt,-nt]) #assign the new nucleotide

}
seq1 #the output is the new vector of symbols after including substitutions

}

3.3.3 Differences in the divergence estimation when we fail to use the correct model

The right selection of the correct model is currently fundamental for accurate estimates of the
divergence. Let’s simulate data considering an evolution under the JC+I+G model and compare
with the theoretical curve given JC model:

#Example Plot: JC + gamma + Invariant positions

par(mfrow=c(1,1))

L <- 1e3

seq.ancestral <- sample(x=Tnt,size=L,replace=TRUE,prob=c(0.25,0.25,0.25,0.25))

subst.rate <- 1e-6

mu <- 1e-6

ratio.invariant <- 0.3

Gamma.shape <- c(1)

#we subset 30 different divergence times G <- seq(from=1e3,to=1e6,by=(1e6-1e3)/29) y1 <-

seq(from=0,to=2*subst.rate*G[30],by=2*subst.rate*G[30]/29)

plot(x=2*G,y=y1,ylim=c(0,2),type="l",col="black",xlab="Time",ylab="Divergence")

#theoretical curve JC

y2 <- c(3/4-3/4*exp(-4/3*subst.rate*2*G))

lines(x=2*G,y=y2,ylim=c(0,2),type="l",col="cyan")

#theoretical curve + invariant

y3 <- c(3/4*(1-ratio.invariant)-3/4*(1-ratio.invariant)*exp(-4/(3*(1-ratio.invariant))*subst.rate*2*G))

lines(x=2*G,y=y3,ylim=c(0,2),type="l",col="blue")

#theoretical curve + invariant + gamma

y4 <- c(3/4*(1-ratio.invariant)*(1-(4/(3*(1-ratio.invariant))*subst.rate*2*G / Gamma.shape+1)^-Gamma.shape))

lines(x=2*G,y=y4,ylim=c(0,2),type="l",col="red")
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3.4 Model Selection

D.obs.JC.gamma <- array(0,30)

D.real <- array(0,30)

i <- 1

for(g in G) {
#gamma is not included when calculating total mutations because the mean = subs.rate

n.subst.lineage.1 <- rpois(n=1,lambda=subst.rate * L* (1-ratio.invariant) * g)

n.subst.lineage.2 <- rpois(n=1,lambda=subst.rate * L* (1-ratio.invariant) * g)

D.real[i] <- (n.subst.lineage.1 + n.subst.lineage.2)/(length(seq.ancestral)*(1-ratio.invariant))

seq.lineage.1.JC <- substitutions.on.sequence.plusI.Gamma( seq.ancestral,I= ratio.invariant,

Gamma.shape, n.subst.lineage. 1, Q.JC ,Tnt)

seq.lineage.2.JC <- substitutions.on.sequence.plusI.Gamma( seq.ancestral,I= ratio.invariant,

Gamma.shape, n.subst.lineage. 2, Q .JC,Tnt)

D.obs.JC.gamma[i] <- sum(seq.lineage.1.JC != seq.lineage.2.JC) / (length(seq.ancestral)*(1-0))

i <- i + 1

}
lines(x=2*G,y=D.obs.JC.gamma,type="p",col="red")

lines(x=2*G,y=D.real,type="p",col="black")

Here we want to show that the selection of a different model from the real one can give us very
different estimates of corrected divergence (see Figure 6), which may seriously affect the results
or the conclusions of our work. Therefore we have to be cautious choosing the right evolutionary
model.
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Figure 6: Plot showing the theoretical (lines) and simulated corrected divergence (circles) for JC (cyan), JC+I
(blue), JC+I+G (red). Black lines shows the number of real mutations on the sequence

3.4 Model Selection

As it is commented before before, the selection of the correct model is fundamental for accurate
estimates of the divergence. How can we select the best model? Given some data (for example
two sequences from two different species), one way is calculating the probability of the data given
a specific chosen model. If we chose different models we can calculate the probability (likelihood)
for each model and then compare them. A way to do it is using the likelihood ratio test.
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3.4 Model Selection

3.4.1 The Likelihood of the data for a given model

The likelihood must be calculated from the theoretical equations from each different model. The
probability of a given model must be obtained over the best parameter(s) for this model. For
example, in the Jukes and Cantor model, the only parameter is d, the real divergence of two
sequences. The probability is obtained for each position independently and given by isolating
D (difference or not in this position) in equation 2. p0(d) indicates the probability to have an
invariant position given a divergence d. p1(d) indicates the probability to have a given variant
at a unique position given a divergence d (3 different possibilities) .

p0(d) =
1

4
+

3

4
e−

4
3∗d (3)

p1(d) =
1

3
(1− p0(d)) =

1

4
− 1

4
e−

4
3∗d (4)

Given that there are two states (mutation or not), we use a binomial to calculate the global
probability f(x|d) = C(3p1(d))x(p0(d))(L−x), where C is a constant, L is the length of the
sequence and x the number of mutations. The best parameter d is the one that has the highest
probability. Finally, as a technical comment, the probability is redefined to consider all 4x4
type of mutations in order to compare other more complex models that consider transitions and
transversions and the frequencies of the nucleotides (multiplied by 1/4 and use a multinomial of
16 cells). The logarithm of the function is calculated to facilitate the computation of f(x|d).

#Observed data:

L <- 1e3

x <- 300 #D.obs = 300/1e3 = 0.3

nS <- 125 #number of transitions

nV <- x-nS #number of transversions

par(mfrow=c(1,3))

#In case JC, the probability that a position has a different nucleotide between 2 seqs is:

nit <- 1e5

D.real <- runif(nit) #Here we simulate 1e5 values of divergence given the observed values

logLik <- x * log(1/16 - 1/16*exp(-4/3*D.real)) + (L-x) * log(1/16 + 3/16*exp(-4/3*D.real))

p.ML <- which(logLik == max(logLik))

ML.1 <- max(logLik)

MLE.1 <- D.real[p.ML]

ML.1

MLE.1

#Also, the confident interval can be obtained by lowering the MLE by X-square(1dgf,5%)/2

= 1.92: (max(logLik) - 1.92)

Ci <- logLik

Ci[which(Ci > max(logLik) - 1.92)] = min(logLik)

cil <- 1

cir <- 1

for(i in 1:nit) {
if(D.real[i] < MLE.1 && Ci[i] > Ci[cil]) cil <- i

if(D.real[i] > MLE.1 && Ci[i] > Ci[cir]) cir <- i

}

D.real.int.chi2.1 <- c(0,0)

D.real.int.chi2.1[1] <- D.real[cil]

D.real.int.chi2.1[2] <- D.real[cir]

plot(D.real,logLik,cex = .1,main="Model JC69")
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3.4 Model Selection

abline(v=D.real.int.chi2.1[1],col="red")

abline(v=D.real.int.chi2.1[2],col="red")

text(D.real.int.chi2.1[1],min(logLik),sprintf("Dl=%.3f",D.real.int.chi2.1[1]),adj = c(1,0))

text(D.real.int.chi2.1[2],min(logLik),sprintf("Dr=%.3f",D.real.int.chi2.1[2]),adj = c(0,0))

abline(h=max(logLik) - 1.92,col="red")

text(min(D.real),max(logLik),sprintf("Lk=%.3f",max(logLik)),adj = c(0,0))

#We try our data with a model Kimura1980: Parameters are the divergence and the ratio transition(S)

/ transversion(V)

#In case using the model K80, the probability that a position has a different nucleotide

between 2 seqs is:

#D.obs <- 1/2*log(1-2*S-V) - 1/4*log(1-2*V)

#The likelihood function is:

nit <- 1e5

D.real <- runif(nit)

k <- runif(nit,-1,1)

k <- 10 ^k

p0 <- 1/4+1/4*exp(-4*D.real/(k+2))+1/2*exp(-2*D.real*(k+1)/(k+2))

p1 <- 1/4+1/4*exp(-4*D.real/(k+2))-1/2*exp(-2*D.real*(k+1)/(k+2))

p2 <- 1/4-1/4*exp(-4*D.real/(k+2))

logLik <- (L-nS-nV) * log(p0/4) + nS * log(p1/4) + nV * log(p2/4)

p.ML <- which(logLik == max(logLik))

ML.2 <- max(logLik)

MLE.21 <- D.real[p.ML]

MLE.22 <- k[p.ML]

ML.2

MLE.21

MLE.22

D.real.int.chi2.2 <- c(0,0,0,0)

#The confident intervals can be obtained by lowering the MLE by X-square(1dgf,5%)/2 = 1.92:

(max(logLik) - 1.92)

Ci <- logLik

Ci[which(Ci > max(logLik) - 1.92)] = min(logLik)

#first parameter:

cil <- 1

cir <- 1

for(i in 1:nit) {
if(D.real[i] < MLE.21 && Ci[i] > Ci[cil]) cil <- i

if(D.real[i] > MLE.21 && Ci[i] > Ci[cir]) cir <- i

}

D.real.int.chi2.2[1] <- D.real[cil]

D.real.int.chi2.2[2] <- D.real[cir]

plot(D.real,logLik,cex = .1,main="Model K80")

abline(v=D.real.int.chi2.2[1],col="red")

abline(v=D.real.int.chi2.2[2],col="red")

text(D.real.int.chi2.2[1],min(logLik),sprintf("Dl=%.3f",D.real.int.chi2.2[1]),adj = c(1,0))

text(D.real.int.chi2.2[2],min(logLik),sprintf("Dr=%.3f",D.real.int.chi2.2[2]),adj = c(0,0))

abline(h=max(logLik) - 1.92,col="red")

text(min(D.real),max(logLik),sprintf("Lk=%.3f",max(logLik)),adj = c(0,0))

#second parameter:

cil <- 1

cir <- 1

for(i in 1:nit) {
if(k[i] < MLE.22 && Ci[i] > Ci[cil]) cil <- i

if(k[i] > MLE.22 && Ci[i] > Ci[cir]) cir <- i
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}

D.real.int.chi2.2[3] <- k[cil]

D.real.int.chi2.2[4] <- k[cir]

plot(k,logLik,cex = .1,main="Model K80")

abline(v=D.real.int.chi2.2[3],col="red")

abline(v=D.real.int.chi2.2[4],col="red")

text(D.real.int.chi2.2[3],min(logLik),sprintf("kl=%.3f",D.real.int.chi2.2[3]),adj = c(1,0))

text(D.real.int.chi2.2[4],min(logLik),sprintf("kr=%.3f",D.real.int.chi2.2[4]),adj = c(0,0))

abline(h=max(logLik) - 1.92,col="red")

text(min(D.real),max(logLik),sprintf("Lk=%.3f",max(logLik)),adj = c(0,0))

Figure 7: First. Likelihood plot of the observed data for the model JC and the confident intervals. Second
and Third, Likelihood plot of the data for the model Kimura-2 for the parameters D and the ratio of transi-
tion/transversion (k), respectively.

3.4.2 The Likelihood Ratio Test (LRT) to estimate the best model

The LRT is a test that compares the Likelihood of two different models that are nested (that
is, one model have more parameters than the other but the rest are common). The LRT distri-
bution follows a χ2 distribution with a number of degrees of freedom resulting of the difference
of the number of parameters between the models. For non-nested models, another methods of
comparison, like Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)
are most used. Let’s do a comparison of models using LRT:

#The significance can be obtained from a Chi-square with the difference between models as

degree of freedom

ML.1

ML.2

Xi2 <- 2*(ML.2-ML.1)

1-pchisq(Xi2,1) #Probability that the null model (JC) is accepted
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4 Phylogenetics

This section explains some basic procedures for the construction of DNA sequence phylogenies,
that is, the use of sequence DNA to construct evolutionary trees. A tree is a graphical repre-
sentation of the relationships between the studied lineages using a tree structure in nodes and
branches (see Figure 8).
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Figure 8: First, tree representation of six lineages, with different length branches representing the times to
the common ancestral, represented by internal nodes. Second, representation of the same tree but showing the
different substitution rates of each branch instead the time. Third, an unrooted tree; only the differences between
lineages are represented, but not the time events.
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4.1 Rooted and unrooted Trees

4.1 Rooted and unrooted Trees

A rooted tree means that a factor related to the evolutionary time is represented over the axis
of the tree, from the root (ancestral lineage) to the tips (the current lineages). An outgroup
(farther lineage that join to the older node) is usually used to polarize the representation in
the correct direction. The first two trees in the Figure 8 are rooted trees and the last one is
an unrooted tree. An unrooted tree is a graphical representation of the relationship between
lineages, but it does not give information about the ancestral times of the internal nodes (the
common ancestors).

4.2 Species Trees and Gene Trees

The phylogeneticists are usually interested in inferring the relationship among the species, that
is, a tree of the species. In molecular Evolution studies is common to represent phylogenetic trees
using a region of the DNA sequence from the whole genome. This information is partial and may
contain only the particular relationship of this region among the studied lineages (see Figure 2).
A species tree should collect information from different sources to be a confident species tree.
The phylogeneticists are also interested in evaluating the monophyletic features of groups. A
monophyletic group is composed by the lineages that share a same common ancestor node.

4.3 Before starting a phylogenetic reconstruction

There are some basic steps before starting a phylogenetic reconstruction. First, we must be
sure the sequences we are comparing are homologous sequences (the sequences have a common
origin). In case of a species tree, it is important to have orthologous sequences (the sequences
have a common origin by descendent, in contrast to paralogous sequences, related by duplication
events). Also, once the alignment is done, it would be convenient to check the alignment and not
use the regions that are too heterogeneous (see for example the program Gblocks, (Castresana,
2000; Talavera and Castresana, 2007)). Finally, the selection of the best evolutionary model
is also fundamental for an accurate reconstruction, as we saw in the previous section (see for
example jModelTest2 , (Darriba et al., 2012)).
Open the file ”Bioinf Phylogeny.R”and run the R commands following this section.

4.4 Create a history and simulate sequences

Let’s first start constructing a tree history. Imagine the following history given in the newick
format:

#We want to study the following phylogeny:

#Newick format

tree.phyl <- "(((1,2),(3,(4,5))),6);"

tree.phyl.time <- "(((1:8e5,2:8e5):7.2e6,(3:7e6,(4:6e6,5:6e7):1e6):1e6):1.2e7,6:2e7);" #in

generations

par(mfrow=c(2,1))

library(ape) #plot the real species tree

tree.phyl.time.T <- "(((1:8e-1,2:8e-1):7.2e0,(3:7e0,(4:6e0,5:6e0):1e0):1e0):1.2e1,6:2e1);"

#in 1e6 generations

cat(tree.phyl.time.T, file = "tree.phyl.time.T.phy", sep = "\n")
tree.phyl.time.T <- read.tree("tree.phyl.time.T.phy") # load tree

unlink("tree.phyl.time.T.phy") #delete the file

plot(tree.phyl.time.T)
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4.4 Create a history and simulate sequences

tree.phyl.time.D <- "(((1:0.024,2:0.016):0.144,(3:0.210,(4:0.06,5:0.06):0.02):0.01):0.12,6:0.2);"

#in divergence/nt

cat(tree.phyl.time.D, file = "tree.phyl.time.D.phy", sep = "\n")
tree.phyl.time.D <- read.tree("tree.phyl.time.D.phy") # load tree

unlink("tree.phyl.time.D.phy") # delete the file

plot(tree.phyl.time.D)

The example tree are the two first shown in the Figure 8. It is convenient to construct a
matrix with the tree information and some more useful data for reconstructing the tree. In our
example:

#Tree example: include the nodes and relative times BUT ALSO mu and Ne: That is, no real

molecular clock and the possibility of incomplete lineage sorting

n.lineages <- 6

tree.data <- matrix(c(

1, 1, 7, 8e5, 3e-8, 1e4,

2, 2, 7, 8e5, 2e-8, 1e3,

3, 3, 9, 7e6, 3e-8, 1e4,

4, 4, 8, 6e6, 1e-8, 1e4,

5, 5, 8, 6e6, 1e-8, 1e5,

6, 6, 11, 2e7, 1e-8, 1e4,

1, 2, 10, 7.2e6, 2e-8, 5e3,

4, 5, 9, 1e6, 2e-8, 1e5,

3, 8, 10, 1e6, 1e-8, 1e5,

7, 9, 11, 1.2e7, 1e-8, 1e5,

6, 10, 0, 0, 1e-8, 1e4 #outgroup

),nrow=2*n.lineages-1,ncol=6,dimnames=list(c(sprintf("Node%02d", c(1:(2*n.lineages-1)))),

c("node1","node2","go.to.node","Time.sp","mu","Ne")), byrow=TRUE)

tree.data <- data.frame(cbind(tree.data[,1:6]))

tree.data

Calculate by simulation the divergence between the specific lineages (that is, the time of spe-
ciation plus the time of coalescent between lineages) and the total mutation for each branch.
Finally construct the sequences for each lineage given the parameters included:

#counting the time period of coalescence of nodes (that is, from present to past, after

species join, count when the sequences coalesce)

#COALESCENCE of lineages in a population, prob=1/Ne in haploid population

#the expected time of coalescence follows an exponential distribution (the expected time

that something random occurs)

tree.data <- data.frame(cbind(tree.data[,c(1:6)],Time.seq=tree.data$Time.sp))

for(lg in (n.lineages+1):(2*n.lineages-1)) {
#time speciation first ind.

t1 <- tree.data$Time.seq[tree.data$node1[lg]]

#time speciation second ind.

t2 <- tree.data$Time.seq[tree.data$node2[lg]]

#TIME COALESCENCE both sequences in the joined population

time.coal <- rexp(n=1,rate=1/tree.data$Ne[lg])

#adding time of coalescence to the first and second nodes

tree.data$Time.seq[tree.data$node1[lg]] <- t1 + time.coal

#adding time of coalescence to the first and second nodes

tree.data$Time.seq[tree.data$node2[lg]] <- t2 + time.coal

}
tree.data

#counting the number of substitutions occurred in each branch
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tree.data <- data.frame(cbind(tree.data[,c(1:7)],mutations=rep(NA,2*n.lineages-1)))

L <- 1e3 #The length of the sequence to study is L

tree.data$mutations <- rpois(n=2*n.lineages-1,lambda=tree.data$mu * tree.data$Time.seq *

L)

tree.data

## CONSTRUCT SEQUENCES ## #We want to know what are the sequences we have from this tree,

assuming a mutational model, for example JC69

Tnt <- c("A","C","G","T")

#Starting form a sequence, we include mutations

seq1 <- sample(x=Tnt,size=L,replace=TRUE,prob=c(0.25,0.25,0.25,0.25))

seq <- matrix(rep(seq1,2*n.lineages-1),ncol=L,byrow=TRUE)

#Start to include mutation to each node according the order of nodes, from past to present:

#Jukes and Cantor rate matrix

Q.JC <- matrix(1/3,ncol=4,nrow=4,dimnames=list(Tnt,Tnt))

for(x in 1:4) Q.JC[x,x] <- 0; Q.JC[x,x] <- -sum(Q.JC[x,])

for(node in (2*n.lineages-2):1) {
seq[node,] <- substitutions.on.sequence.plusI.Gamma(seq=seq[node,],I=0, Gshape=0,

substitutions=tree.data$mutations[node], Q=Q.JC, Tnt=Tnt)

seq[tree.data$node1[node],] <- seq[node,]

seq[tree.data$node2[node],] <- seq[node,]

}

The objective of this practical exercise is to reconstruct a phylogenetic tree and compare the real
tree with the inferred trees obtained. We here choose the right model (Jukes and Cantor model)
to calculate the divergence between the lineages (in this session the effect of selecting different
models of evolution is not the objective).

#function calculating diff and divergence using JC69:

diffs.plus.jc69.div.matrix <- function(seq.matrix) {
n.lineages <- (length(seq.matrix[,1])+1)/2

L <- length(seq.matrix[1,])

D <- matrix(0,nrow=n.lineages,ncol=n.lineages)

#Calculate the matrix of differences between seqs

for(i in 1:(n.lineages-1)) {
for(j in (i+1):n.lineages) {

D[i,j] <- sum(seq.matrix[i,] != seq.matrix[j,])

}
}
#Calculate the divergence matrix assuming the model JC69:

for(i in 1:(n.lineages-1)) {
for(j in (i+1):n.lineages) {

D[j,i] <- -3/4*log(1-4/3*D[i,j]/L) #Jukes and Cantor correction

}
}
D

}

#Calculate the Divergence

D <- diffs.plus.jc69.div.matrix(seq)

D

#Fill in the symmetric matrix

for(i in 1:(length(D[1,])-1)) for(j in (i+1):length(D[,1])) D[i,j] <- D[j,i]

D
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4.5 Methods of reconstruction of Phylogenetic Trees

There are many different methods of phylogenetic reconstruction. Here the methods that are
commented are classified in the ones using distance matrices (for example, UPGMA, Neighbor-
joining and others) or the ones using the entire information of the data (Likelihood and Bayesian
methods). The Distance methods are typically fast and have unique solutions. On the other
hand, Bayesian methods collect a number of compatible solutions, usually obtained by heuristic
methods given the impossibility to calculate all possible solutions. A consensus tree (a compatible
tree for all possible solutions with some unresolved nodes [more than two new branches]) is
displayed as a solution. Parsimony methods are useful but not really used for sequence DNA
data. Moreover, the effect of Long Branch Attraction (LBA) may easily distort the inference of
a good phylogenetic tree using Parsimony.

4.5.1 Distance Matrices Methods

The distance methods must first calculate a matrix of distances between each pair of species. The
matrix is used to reconstruct the phylogenetic tree. In general, the reconstruction involves the
join of the closest nodes, recalculation of the matrix and repeat the process until finish. Typical
distance methods are UPGMA, Least-square and Neighbour-joining methods.

The UPGMA method (Sokal and Sneath, 1963) is based on the assumption of a strict molecular
clock evolution of the species. The obtained tree is always ultrametric, that is, in this rooted tree,
the distance from the root to the tips is equal for whatever tip in the tree. The methodology seeks
for the shortest distance of the matrix, then calculates the distance to the common ancestor as
the half of the distance among both species. Then recalculate the matrix calculating the distance
between the new cluster and the rest. This distance is calculated using the mean distance with
all the species contained in the cluster. The process is repeated until having a single cluster.
This method is very affected to the violation of the assumption of a strict molecular clock and
is not very used.

The Neighbour-Joining method (Saitou and Nei, 1987), like the Least-square method (Cavalli-
Sforza and Edwards, 1967) does not assume a molecular clock. That means the substitution rate
may be different in the different branches. Also, this methods construct unrooted trees. In the
case of Neighbour-joining (NJ) method, the minimum evolution criterion is used, that is, the
tree with the smallest sum of branch lengths. The algorithm starts with a star tree and then
look for two nodes that have the greatest reduction in tree length. The process is repeated until
the tree is fully resolved (that is, each internal node bifurcates). The NJ method gives the right
solution if the original distance matrix is additive. A distance matrix is additive if it is possible
to find a tree where the pairwise distances will be equal to the sum of all branches that join
the two given nodes. The NJ method is quite robust and gives reasonable trees in very short
time. The concerns to this method are the possible no additivity of the distance matrix given,
which may happen if the evolutionary method is incorrect, poor alignments or with the presence
of horizontal transfer, but also works improperly for very divergent sequences, specially when
substitution rates are high. Another algorithm, named BIONJ (Gascuel, 1997) solve this last
situation and performs better with high and variable substitution rates.

4.5.2 Methods based on Likelihood calculation

A maximum likelihood (ML) criterion can be used to estimate tree topologies. This method looks
for the highest probability of observing the data for a given parameters that define the topology
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of the tree. Using heuristic methods, the whole parameters can be estimated and the ML tree is
obtained. This method uses a large number of calculations and is generally slower than methods
based on distances. On the other hand, the solutions are commonly very reasonable.

Bayesian methods to obtain a phylogenetic tree: the fundamental difference between the ML
methods and the Bayesian methods is the concept of the uncertainty of the parameter. The
parameter to be estimated has also a probability distribution that must to be inferred. The
methodology to estimate the distribution of the parameters is based on the Bayes theorem.
Priors to each parameter have to be defined and posterior distributions are obtained. A number
(distribution) of compatible trees with the observed data are finally given. This methodology
is very robust and has the advantage to obtain the possible compatible trees. A popular and
very powerful software for inferring phylogenies using a Bayesian method is BEAST (Drummond
et al., 2012).

4.5.3 Practical Exercises

The code that is commented here reconstruct a phylogenetic tree using basic clustering methods.

## HOW TO RECONSTRUCT A TREE? CLUSTERING METHODS

#From Distance matrix:

#UPGMA. Strict molecular clock

#Steps: from distance matrix, find the shortest distance, recalculate the matrix and average

the closest, repeat until having 1x1 matrix

#how to keep data and represent data: matrix with rows indicating the nodes and the distance

between them.

locate.min.lower.matrix <- function(D.tmp) {
if(is.null(rownames(D.tmp))) rownames(D.tmp) <- c(1:length(D.tmp[,1]))

if(is.null(colnames(D.tmp))) colnames(D.tmp) <- c(1:length(D.tmp[1,]))

l <- length(D.tmp[1,])

if(l<2) stop("too low dimensions")

min.value <- D.tmp[2,1]

row.value <- 2

col.value <- 1

for(i in 1:(l-1)) { #cols

for(j in (i+1):l) { #rows

if(min.value > D.tmp[j,i]) {
min.value <- D.tmp[j,i]

row.value <- j

col.value <- i

}
}

}
# coordinates of the minimum value in the matrix

i <- as.numeric(rownames(D.tmp)[row.value])

j <- as.numeric(colnames(D.tmp)[col.value])

c(i,j,min.value)

}

do.tree.matrix.upgma <- function(D) {
n.lineages <- length(D[1,])

#matrix of all relationships

tree.matrix <- matrix(0,nrow=2*n.lineages-1, ncol=4,dimnames=list(c(1:(2*n.lineages-1)),

c("node1","node2","go.to.node","Div")))

tree.matrix[1:n.lineages,1:2] <- c(1:n.lineages) #init

cluster <- matrix(0,nrow=n.lineages,ncol=n.lineages+1, dimnames=list(sprintf("line%d",c(1:n.lineages)),

sprintf("cluster%d",c(0:(n.lineages)))))

#clustering matrix
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4.5 Methods of reconstruction of Phylogenetic Trees

cluster[1:n.lineages,1:2] <- c(1:n.lineages) #init

D.tmp <- D

rownames(D.tmp) <- c(1:length(D.tmp[,1]))

colnames(D.tmp) <- c(1:length(D.tmp[1,]))

l <- n.lineages

n <- 2

while(length(D.tmp[1,]) > 1) {
Dmin <- locate.min.lower.matrix(D.tmp) #find the minimum value and their cluster coordinates

join.clust <- c(which(cluster[,n] == Dmin[1]),which(cluster[,n] == Dmin[2]))

#locate all lineages in the cluster

node.number <- n+n.lineages-1

cluster[join.clust,n] <- node.number #assign a new node to the new cluster

cluster[,n+1] <- cluster[,n] #copy the column for next step

#do the new matrix averaging the clustering lineages using the original D matrix

D.tmp <- matrix(0,l-1,l-1)

nodes <- sort(unique(cluster[,n])) #find the nodes that are currently present

colnames(D.tmp) <- t(nodes)

rownames(D.tmp) <- t(nodes)

ii <- 1

for(i in as.numeric(t(nodes))) {
jj <- 1

for(j in as.numeric(t(nodes))) {
D.tmp[jj,ii] <- mean(D[which(cluster[,n]==j),which(cluster[,n]==i)])

jj <- jj + 1

}
ii <- ii + 1

}
#D.tmp

#calculating the new tree matrix

tree.matrix[node.number,1:2] <- Dmin[1:2]

nodes.prec <- sort(unique(cluster[which(cluster[,n]==node.number),n-1]))

tree.matrix[nodes.prec , 3] <- node.number

tree.matrix[nodes.prec, 4] <- Dmin[3]/2

n <- n + 1

l <- l - 1

}
#relative divergence for each node

for(i in (2*n.lineages-2):(n.lineages+1)) {
tree.matrix[i,4] <- tree.matrix[i,4] - tree.matrix[max(tree.matrix[i,1:2]),4]

}
#output a tree.data variable with the nodes and the distances and the clustering matrix

list(tree.data=as.data.frame(tree.matrix),cluster=cluster[,-length(cluster[1,])])

}

#Finally, do the UPGMA tree using the matrix D

UPGMA.tree <- do.tree.matrix.upgma(D)

UPGMA.tree

#NJ: no molecular clock. It is the best tree if distance data matrix is additive (d ij

= d ix + d xj)

#Ploting using the libraries "ape" and "phangorn": library(ape) library(phangorn)

par(mfrow=c(1,1))

UPGMA.D <- upgma(D)

str(UPGMA.D) #arguments in output

UPGMA.D$edge #relationship among nodes

plot(UPGMA.D) #inferred tree with UPGMA

Dd <- as.dist(lower.tri(D) ∗ D)

NJ.D <- nj(Dd) #relationship among nodes

str(NJ.D) #arguments in output

NJ.D$edge

plot(NJ.D,"u") inferred unrooted tree using NJ
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4.6 Support of the phylogenetic tree inferred

par(mfrow=c(1,1))

plottree(tree.phyl.time.T) #real tree

4.6 Support of the phylogenetic tree inferred

There are several methods to contrast the support of the reconstruction: methods that look
at the congruence between different datasets, resampling methods like bootstrap or also base-
model methods, like parametric bootstrap. Also, some statistical test to compare the compat-
ibility of phylogenetic trees using a likelihood approach are available (see for example Kishino
and Hasegawa, 1989). In this practical course, the non-parametric bootstrap is evaluated. The
simplest bootstraping method consist in picking columns from the alignment sequence data with
replacement and reconstruct a phylogeny with the new dataset. By doing it many times is pos-
sible to have an idea of the precision of the phylogeny. Each node is contrasted in relation to
the obtained phylogeny, so we have a bootstrap value for each node. A value lower that 98-99%
is usually considered not confident.

bootstrap.seq.matrix <- function(seq.matrix) {
L <- length(seq.matrix[1,])

post <- sample(x=c(1:L),size=L,replace=TRUE)

seq.matrix <- seq.matrix[,post]

seq.matrix

}

#recursive function to look for external nodes

look.for.external.nodes <- function(tree.observed,i) {
external.nodes <- 0

if(tree.observed$node2[tree.observed$node1[i]] == tree.observed$node1[i]) {
external.nodes <- c(external.nodes,tree.observed$node1[i])

} else {
external.nodes <- c(external.nodes,look.for.external.nodes(tree.observed,tree.observed$node1[i]))

}
if(tree.observed$node2[tree.observed$node2[i]] == tree.observed$node1[i]) {

external.nodes <- c(external.nodes,tree.observed$node2[i])

} else {
external.nodes <- c(external.nodes,look.for.external.nodes(tree.observed,tree.observed$node2[i]))

}
external.nodes[-1]

}

#function to compare internal tree nodes

compare.tree.nodes <- function(tree.observed,tree.check) {
n.lineages <- length((tree.observed[,1]+1)/2) #add a new field

if(is.null(tree.observed$bootstrap)) tree.observed <- data.frame(cbind(tree.observed,bootstrap=0))

for(i in (2*n.lineages-2):(n.lineages+1)) { #compare all internal nodes

internal.nodes.obs <- sort(unique(look.for.external.nodes(tree.observed,i)))

internal.nodes.chk <- sort(unique(look.for.external.nodes(tree.check,i)))

if(length(internal.nodes.obs) == length(internal.nodes.chk)) {
if(sum(internal.nodes.obs != internal.nodes.chk) == 0) {

tree.observed$bootstrap[i] <- tree.observed$bootstrap[i] + 1

}
}

}
tree.observed

}
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4.7 Phylogenomics: A way to obtain the Species Tree

# DO BOOTSTRAP:

iter <- 1e3

for(i in 1:iter) {
seq.boot <- bootstrap.seq.matrix(seq)

#calculate the distance matrix

D.boot <- diffs.plus.jc69.div.matrix(seq.boot)

#do symmetric matrix

for(i in 1:(length(D.boot[1,])-1))

for(j in (i+1):length(D.boot[,1]))

D.boot[i,j] <- D.boot[j,i]

#calculate the number of equal clustered internal nodes in relation to the observed data

UPGMA.boot <- do.tree.matrix.upgma(D.boot)

#UPGMA.boot

tree.data <- compare.tree.nodes(tree.observed=tree.data,tree.check=UPGMA.boot$tree.data)

}
tree.data$bootstrap <- tree.data$bootstrap/iter

tree.data #look at bootstrap support

4.7 Phylogenomics: A way to obtain the Species Tree

The phylogeny obtained based on a region of DNA is a gene tree, which may be a close approach
to the species tree. Nevertheless, the obtained phylogeny is a particular history of the lineages in
the specific region studied. Some nodes in the tree may have low support because the bifurcations
are very close one each other and this low resolution may be affected by the particular DNA
region studied. This regions are also called anomalous regions because they can be affected by
the stochastic divergence of the lineages at the ancestral common population (in phylogeny this
is related to the problem of Incomplete Lineage Sorting). One way to try to solve this problem
is to use a phylogenomics approach, that is, the use of many DNA unlinked regions that allows
the estimation of the split between species (not lineages). Essentially there are three approaches:
(i) the use of a supermatrix, that is, merge all adta inone and calculate a unique tree; (ii) the
calculation of a supertree by mean of many independent trees calculated around all the genome
and (iii) the use of likelihood or bayesian approaches to estimate jointly some general parameters
and remain others as particular of each locus. Supermatrix and supertrees are not convenient in
many cases because they do not consider the heterogeneity across regions or because they inflate
the variance and are not consistent methods. More, statistical support is not robust using these
methods although they give an approximated idea about the species tree. Methods based on
likelihood methods should be used although they are computationally expensive. The review
about phylogenetic inference using whole genomes from Rannala and Yang explain some of the
problems about phylogenetic reconstruction (Rannala and Yang (2008)).

#Calculate a NJ tree for each one using "phybase" library

#Then use the STAR algorithm by mean of star.sptree function in phybase to calculate the

consensus species tree.

#use star.sptree function: STAR algorithm # Use the data "tree.data" from the previous

exercises

tree.data <- data.frame(cbind(tree.data[,1:6]))

tree.data <- data.frame(cbind(tree.data,Time.seq=0,mutations=0))

mu.vector <- tree.data$mu

n.loci <- 100

NJ.Dl <- array(,n.loci)

locus <- 1
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4.7 Phylogenomics: A way to obtain the Species Tree

while(locus <= n.loci) {
tree.data$Time.seq <- tree.data$Time.sp

#Calculate times

for(lg in (n.lineages+1):(2*n.lineages-1)) {
t1 <- tree.data$Time.seq[tree.data$node1[lg]] #time speciation first ind.

t2 <- tree.data$Time.seq[tree.data$node2[lg]] #time speciation second ind.

time.coal <- rexp(n=1,rate=1/tree.data$Ne[lg]) #TIME COALESCENCE both sequences

tree.data$Time.seq[tree.data$node1[lg]] <- t1 + time.coal #adding time of coalescence

tree.data$Time.seq[tree.data$node2[lg]] <- t2 + time.coal #adding time of coalescence

}
#Calculate number of mutations

L <- floor(runif(1,400,2000)) #The length is different each locus.

tree.data$mu <- mu.vector*10(̂runif(1,-0.5,0.5)) #mutation is different each locus

tree.data$mutations <- rpois(n=2*n.lineages-1,lambda=tree.data$mu*tree.data$Time.seq*L)

Tnt <- c("A","C","G","T")

seq1 <- sample(x=Tnt,size=L,replace=TRUE,prob=c(0.25,0.25,0.25,0.25))

seq <- matrix(rep(seq1,2*n.lineages-1),ncol=L,byrow=TRUE)

#include mutation according to a JC model:

Q.JC <- matrix(1/3,ncol=4,nrow=4,dimnames=list(Tnt,Tnt)) #Jukes and Cantor rate matrix

for(x in 1:4) Q.JC[x,x] <- 0; Q.JC[x,x] <- -sum(Q.JC[x,])

for(node in (2*n.lineages-2):1) {
seq[node,] <- substitutions.on.sequence.plusI.Gamma(seq=seq[node,], I=0,Gshape=0,

substitutions=tree.data$mutations[node],Q=Q.JC,Tnt=Tnt)

seq[tree.data$node1[node],] <- seq[node,]

seq[tree.data$node2[node],] <- seq[node,]

}
#Calculate divergence using JC

D <- diffs.plus.jc69.div.matrix(seq)

#Calculate NJ tree

if(sum(apply(D,c(1,2),is.nan)) == 0) {
for(i in 1:(length(D[1,])-1)) for(j in (i+1):length(D[,1])) D[i,j] <- D[j,i]

Dd <- as.dist(lower.tri(D) * D)

NJ.Dl[locus] <- write.tree(root(phy=nj(Dd),outgroup=6),file="")

locus <- locus + 1

}
}

speciesname<-species.name(NJ.Dl[1])

taxaname<-speciesname

species.structure<-matrix(0,ncol=n.lineages,nrow=n.lineages)

diag(species.structure)<-1

#Finally, collect all trees and calculate the species tree

multilocus.tree <- star.sptree(NJ.Dl, speciesname, taxaname, species.structure,outgroup="6",method="nj")

#Plot the real and estimated trees

par(mfrow=c(2,1))

plot(tree.phyl.time.T)

plottree(multilocus.tree)
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5 Final Exercise

Download, in fasta format, the dataset for the complete mitochondrial genome of a single indi-
vidual of the several available primate species (Eukaryota; Metazoa; Chordata; Craniata; Verte-
brata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates) and one outgroup (Sus
scrofa). Here, use Homo sapiens, Pan troglodytes, Lemur catta and Papio hamadryas. Do a
multiple alignment (for example using Tcoffe or MAFFT). Filter the poorly aligned positions
and divergent regions (e.g. using Gblocks) and then estimate the best evolutionary model (for
example using jModelTest). Do a ML phylogenetic reconstruction (e.g. using PhyML). Calculate
bootstrap support for . Modify the plot using FigTree, iTol or another application and include
the length of the branches and the bootstrap values.
Explain clearly the sequences downloaded, the methods used and the meaning of each analysis
performed (multiple alignment method, filtering data, results of choosing the evolutionary model,
results of the ML analysis). The information must be enough to replicate the analysis and un-
derstand why each analysis was performed. Evaluate the tree (divergence values, evolutionary
model, molecular clock and bootstrap support). The results of this exercise must be presented
in a PDF file containing a method section, the results (a tree) and a short discussion section
evaluating the results.
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