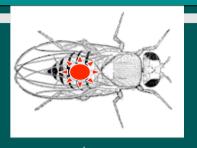


Identification of EMS-induced Mutations in Drosophila by Whole Genome Sequencing


Anoja Perera (agp@stowers.org)

Molecular Biology Core Facility

Stowers Institute for Medical Research

Kansas City, US

Forward Genetics: Mapping a Muatation(s)

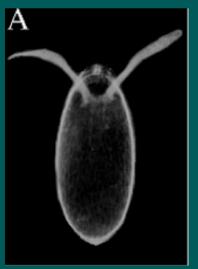
- Labor intensive
- •Time Consuming (over 6 months)
- Often difficult
- Sometimes costly

Initial mapping to a chromosome Using Bal stocks

Fine mapping to a region of a chromosome using Df stocks

Select candidate genes

Amplify and sequence genes


Mutation

Next
Generation
Sequencing?

EMS and "Dorsal Appendage Phenotype"

Ethylmethane Sulfonate (EMS)

- Common chemical mutagen
- Randomly induces single base pair mutations or small insertions or deletions
 - Usually generates G/C to A/T point mutations

Wild Type

Mutant

"Mutant Hunt": Using Illumina GA

- 1. Obtained genomic DNA: F3 homozygous mutants and wild-type males.
- 2. Performed the following steps:
 - a) Made two Illumina genomic fragment libraries (1.5 day)
 - b) Hybridized the fragments on to two flowcell "cluster generation" (2 day)
 - c) Sequenced the flowcells (1-2 weeks)
- 3. Analyzed data to find mutations.

Data Analysis: Primary Analysis

Primary Analysis using Illumina data analysis pipeline.

Images

Sequences

Alignment using ELAND

Uniquely mapping sequences

Data Analysis: Secondary Analysis

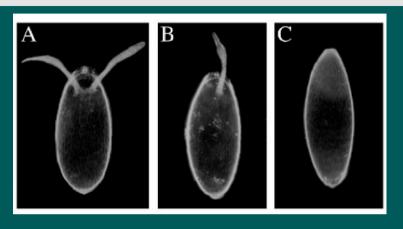
- 1. Aligned each strain individually to reference genome using MAQ (LI *et al.*, 2008)
- 2. Generated consensus sequences for both mutant and wild-type.
- 3. Compared the consensus sequences of both mutant and wild type strains to generate a list of polymorphisms.
- 4. Annotated the polymorphisms to find possible mutations causing phenotype.

Date

Run Statistics

	36bp Single Reads (millions)	Base Pairs (millions)	Genome Coverage	% Error Rate
Wild Type	2.0	1000	0.577	0.04./.007
(7 lanes)	30	1080	8.7X	0.84 +/- 0.05
Mutant				
(7 lanes)	29	1044	8.3X	1.14 +/- 0.07

•We were able to cover 71% of the genome at a quality good enough to call mutations!


"Needle-in-the-haystack"

165 third chromosome SNPs that are specific to the

mutant

Туре	Number
Non-coding	143
Synonymous	12
Non-synonymous	8
nonsense	2
TOTAL	165

Nonsense Mutation #1- Encore

HAWKINS *et al.*, 1996, 1997; VAN BUSKIRK *et al.*, 2000; OHLMEYER *et al.*, 2003

- -Plays a role in regulation of cyclin E during oogenesis
- -Known to have an effect on dorsal appendage formation
- -Mutation results in the replacement of a glutamine with a stop codon

Validation:

Complementation crosses with Df stocks resulted in the same "dorsal appendage phenotype"

Why is this significant? What does this mean to the Drosophila community?

Date 1

Future of Drosophila genetics?

Step	Traditional Mapping	Whole Genome Sequencing Approach
1. Introduce Mutation	Same	Same
2. Screen for phenotype	Same	Same
3. Narrow down region	Approx. 3-6 months	Not necessary
4. DNA Sequencing	Approx. 1-6 months	Approx. 1-2 weeks
5. Analysis	Approx. 1 months	Approx. 1-2 weeks
Total time spent	6 months to a year!	1 month!

"Well, if I need to find a mutation right now, I would not use traditional mapping techniques, I will find the mutations by sequencing the whole genome because it has been done and it works!"

- Dr. Scott Hawley

Current and Future mutation discovery efforts

- Repeated approach for 3 more Drosophila labs
- Tried approach in C. elegans
 - − 2*36bp Paired-end lanes =>20X coverage
 - 2 interesting mutations found!
 - In validation phase
- Genomic capture methods to find mutations in larger organisms.

Date 12

In Conclusion...

Next generation whole genome sequencing approach can be used to easily map EMSinduced mutations in organisms.

- Cost-effective:
 - Currently (September, 2009), 2*36bp PE lanes > 20X coverage of the Drosophila or C. elegans genomes.
- Time efficient:
 - Opposed to the traditional ways of mapping, mutation(s) can be discovered in about a month!