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Genome-wide association study of 14,000
cases of seven common diseases and
3,000 shared controls

The Wellcome Trust Case Control Consortium* NATURE| Vol 4477 June 2007
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NEWS FEATURE PERSONAL GENOMES

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.
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epigenetic variation
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the challenge

“needle-in-a-haystack” problem

Genotype Epigenotype

10-15 M SNPs e 30 M MVPs (28,112,194 NCBI36)
1 M tagSNPs « 3 MtagMVPs (?)

nature

Percentage identical methylation

THE HAPMAP ‘
P,RO,AJEVCT r 3 0 5,000 10,000 15,000 20,000
e geeatic vertethon Distance in bp




methylation profiling approaches

‘Bis-seq’
bisulphite sequencing

candidate e e.g. ABI-3700 platform

approach
Coverage (0.1-1%)

‘MeDIP-chip’
immunoprecipitation & chip

) 2 e E
genome-W|de - e.g. Nimblegen platform

approach

‘MeDIP-seq’

immunoprecipitation & sequencing

whole-genome N | ! e.g. Solexa platform

approach
Coverage (10-100%)




methylation profiling approaches

‘Bis-seq’

bisulphite sequencing

candidate | e.g. ABI-3700 platform
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tissue-specific methylation
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methylation profiling approaches

Coverage

‘MeDIP-chip’

id immunoprecipitation & chip
geénome-wiae e.g. Nimblegen platform

approach — ’ >
Coverage (1-10%)




genome-wide MeDIP-chip assay
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BATMAN

(Bayesian Tool for Methylation Analysis)
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genome-wide methylation profiles
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methylation profiling approaches

Coverage

Coverage

‘MeDIP-seq’

“ B immunoprecipitation & sequencing
whole-genome e.g. Solexa platform
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whole-genome MeDIP-seq assay
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methylome of human male germline
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methylome on a chip

) wa Epigenomics October 2 2009, Vol. 1, No. 1, Pages 177-200

Hlum "8 Genome-wide DNA methylation profiling using
fﬁ Infinium® assay

Aims: Bisulfite sequence analysis of individual CpG sites within genomic DNA is a powerful approach for
O overvit methylation analysis in the genome. The major limitation of bisulfite-based methods is parallelization.
@ systen Both array and next-generation sequencing technology are capable of addressing this bottleneck. In this
report, we describe the application of Infinium® genotyping technology to analyze bisulfite-converted
DNA to simultaneously query the methylation state of over 27,000 CpG sites from promoters of consensus
coding sequences (CCDS) genes. Materials & methods: We adapted the Infinium genotyping assay to
readout an array of over 27,000 pairs of CpG methylation-specific query probes complementary to bisulfite-
converted DNA. Two probes were designed to each CpG site: a ‘methylated’ and an ‘unmethylated’ query
probe. The probe design assumed that all underlying CpG sites were ‘in phase’ with the queried CpG site
due to their close proximity. Bisulfite conversion was performed with a modified version of the Zymo EZ
DNA Methylation™ kit. Results: We applied this technology to measuring methylation levels across a panel
of 14 different human tissues, four Coriell cell lines and six cancer cell lines. We observed that CpG sites
within CpG islands (CGls) were largely unmethylated across all tissues (~80% sites unmethylated, B <0.2),
whereas CpG sites in non-CGls were moderately to highly methylated (only -12% sites unmethylated,
B < 0.2). Within CGls, only approximately 3-6% of the loci were highly methylated; in contrast, outside
of CGls approximately 25-40% of loci were highly methylated. Moreover, tissue-specific methylation
(variation in methylation across tissues) was much more prevalent in non-CGls than within CGls. Conclusion:
Our results demonstrate a genome-wide scalable array-based methylation readout platform that is both
highly reproducible and quantitative. In the near future, this platform should enable the analysis of
hundreds of thousands to millions of CpG sites per sample.

El dna an

KEYWORDS: bisulfite CCDS CpG DNA array DNA methylation Infinium®

In the recent years, the Human Epigenome Each of these applications has its limitations.
Project (HEP) was initiated with one of the Methylation-sensitive restriction enzymes do
major goals to identify, catalogue and interpret  not allow random access to specific sequences
genome-wide DNA methylation patterns of all  and cannot interrogate every CpG site; how-
human genes in all major tissues 101). The suc-  ever, approximately a third of all CpGs in the

cess of this project depends on the development  genome can be assayed using 2 combination of




nature ARTICLES
nanotechnology

PUBLISHED ONLINE: 22 FEBRUARY 2009 | DOI: 10.1038/NNANO.2009.12

Continuous base identification for single-molecule
nanopore DNA sequencing

James Clarke', Hai-Chen Wu?, Lakmal Jayasinghe'?, Alpesh Patel’, Stuart Reid' and Hagan Bayley?*

A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase
sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and
when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we
show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside
5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the
four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the
exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore
and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for
sequencing nucleic acids and for analysing epigenetic modifications.

Event count
Event count

Residual pore current (pA) Residual pore current (pA)
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Table 1. Major projects, resources and initiatives dedicated to epigenomic research

Trends in Genetics 2008 Vol 25 No 5
Beck & Rakyan

'Epigenome’ efforts

Start

Goals

URL

Human Epigenome Project (HEP)
Encyclopedia of DNA Elements
([ENCODE)

Epigenome Network of Excellence
(NcE)

National Methylome 21 (NAME21)

Epigenetic Treatment of Necplastic
Disease (EPITRON)

Highthroughput Epigenetic Regulatory
Organizaticn In Chrematin (HEROIC)

Epigenetic Control of the Mammalian
Genome (GEN-AU)

AACR Human Epigenome Taskforce
and Alliance for the Human Epigenome
and Disease (AHEAD)

NIH Roadmap: Epigenomics

2000

2003

2004

2005

2005

2005

2006

2006

2008

The HEP aims to identify, catalogue and interpret
genome-wide DNA methylation patterns of all
human genes in all major tissues.

ENCODE aims to carry out a project to identify

all functional elements in the human genome
sequence.

The NoE aims to create a virtual core institute.
Specific aims include (i} to advance scientific
discoveries through a joint research pregramme,
{ii) to integrate young colleagues through the NET-
programme and (iii) to establish an open dialogue
by building an interactive Website.

NAME21 aims te generate a first comprehensive
DNA methylation map of all genes on human
chromesome 21 using bisulphite seguencing
technologies.

EPITRON aims to define and validate epigenetic
cancer treatment. Sepific aims include (i) to define
epigenetic alterations in cancer, (ii) to identify
therapeutic targets and (iii) to develop epi-drugs.
HEROIC aims to advance knowledge of chromatin
function. Specific aims include {i) to decipher
epigenetic profiles, transcription facter networks
and nuclear organization; (ii} to focus on mouse ES
cells and derivatives and (iii) to develop
bioinformatics Tools.

GEN-AU aims to better understand the epigenetic
control of mammalian genomes. Specific aims
include (i) to profile histone modifications, {ii) to
study imprinting and X chromosome inactivation
and {iii) to identify polycomb-trithorax

response elements.

AACR Human Epigenome Taskforce developed the
blueprint for an international human epigenome
project and developed a timetable for the
implementation of the AHEAD project.

The Roadmap Epigenomics Program aims to
generate comprehensive reference maps and new
technology for epigenomic analysis. Specific aims
include (i) to create an international committee; {ii)
to develop standardized platforms, procedures and
reagents for epigenomics research; {iii) to conduct

demonstration projects to evaluate how epigenomes

change; (iv) to develop new technologies for single
cell epigenomic analysis and in vivo imaging of
epigenetic activity and {v) to create a public data
resource to accelerate the application of
epigenomics approaches.

hitp:'www.epigenome.org

http:'www.genome.gov/10005107

hitp:iwww.epigenome-noe.net

http:f'www.faculty.iu-bremen.
de/ajeltsch/name

hitpZiwww.epitron.eu

http/www.heroic-ip.eu

httpJd/www.gen-au.at

httpJiwww.aacr.org/home/scientists/
working-groups-task-forces/task-forces/

human-epigenome-task-force.aspx

httpZ/nihroadmap.nih.gov/epigenomics




Search

NIH Roadmap for Medical Research

Roadmap Home Roadmap Initiatives Funding Opportunities Funded Research FAQs Recent Research Advances

OVERVIEW

Epigenetics is an emerging frontier of science that involves the study of changes in the regulation of gene activity and
expression that are not dependent on gene sequence. For purposes of this program, epigenetics refers to both
heritable changes in gene activity and expression (in the progeny of cells or of individuals) and also stable, long-term
alterations in the transcriptional potential of a cell that are not necessarily heritable. While epigenetics refers to the
study of single genes or sets of genes, epigenomics refers to more global analyses of epigenetic changes across the

entire genome.

NIH Epigenome Roadmap: $190M for 5 years (2008-2013)

5 Awards for Epigenome Mapping/Coordination Centres
9 Awards for Technology Development in Epigenetics

7 Awards for Discovery of Novel Epigenetic Marks

22 Awards for Epigenomics of Human Health and Disease

Cancer, Alzheimer's, Atherosclerosis, Autism, Hypertension, Bipolar Disorder, Asthma,
Lupus Erythematosus, Schizophrenia, Kidney Disease, Muscular Dystrophy and others




genome-wide association studies

* Type 1 Diabetes
* Type 2 Diabetes
* Inflammatory Bowel Disease

« Cancer (Sarcomas, NET, etc)




integrated (epi)genetic approach

Phenotype > Systems Approach > Digital Phenotype ‘

reverse phenotyping




integrated (epi)genomic approach
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examples . ..

Cell 7129, 879-890, June 1, 2007 ©2007 Elsevier Inc. 879

Downregulation of Death-Associated
Protein Kinase 1 (DAPK1) in
Chronic Lymphocytic Leukemia

Aparna Raval,"'° Stephan M. Tanner,' John C. Byrd,? Elizabeth B. Angerman,' James D. Perko,’

Shih-Shih Chen,' Bjdom Hackanson,'*® Michael R. Grever,? David M. Lucas,? Jennifer J. Matkovic,”

Thomas S. Lin,? Thomas J. Kipps,® Fiona Murray,” Dennis Weisenburger,* Warren Sanger,* Jane Lynch,*
Patrice Watson,* Mary Jansen,* Yuko Yoshinaga,® Richard Rosenquist,” Pieter J. de Jong,® Penny Coggill,®
Stephan Beck,® Henry Lynch,” Albert de la Chapelle,’** and Christoph Plass’®*

genetics oublished online 22 June 2008; doi:10.1038/ng 174

Genomic surveys by methylation-sensitive SNP analysis
identify sequence-dependent allele-specific DNA
methylation

Kristi Kerkel', Alexandra Spadolaz, Eric Yuan', Jolanta Kosek', Le Jiang', Eldad Hod’, Kerry Li,
Vundavalli V Murty", Nicole Schupf*, Eric Vilain®®, Mitzi Morris’, Fatemeh Haghighi’ & Benjamin Tycko'~




cancer methylome project

. Andew Feber
Neurofibroma

« common type of benign tumours affecting NF1 patients

« progression to malignant form is rare
« mechanism unknown, no molecular markers

Study Design

pooled samples stratified for NF1 mutations
control (n = 6, pooled)

benign (n = 10, pooled)

malignant (n = 10, pooled)

Approach: MeDIP-seq




% CpG covered

r~

o MmO — NM g W

Chromosome

] Cancer
0 Normal
] Benign

Feber et al. unpublished




common diseases

MeDIP-chip / 27K Infinium

=

DMR analysis

disease-associated DMRs
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Common . Common

common diseases

Disease Disease

Expected number of true DMRs vs. FDR

Backdahl et al, unpublished




conclusions

» Technologies for DNA methylation analysis are
available and working

DNA methylation is stable, specific and
‘essentially’ binary

Disease-associated DMRs exist in cancer and
common disease and can be identified in
tissue and blood

Case for integrated (epi)genomic GWA studies
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