# MODEL-BASED QUALITY ASSESSMENT AND BASECALLING FOR SECONDGENERATION SEQUENCING

HÉCTOR CORRADA BRAVO & RAFAEL A. IRIZARRY
BIOSTATISTICS DEPT.

BLOOMBERG SCHOOL OF PUBLIC HEALTH
JOHNS HOPKINS UNIVERSITY

NGS2009 BARCELONA OCT. 3 2009

### A SET OF SHORT READS

GTTGAGGCTTGCGTTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

### MATCHING

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT

GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG

TCTCGTGCTCGCTCGCTTGAGGCTTGCGTTTA

TGCTCGTCGCTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT

TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

 ${\tt CTCTCGTGCTCGTCGCTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC}$ 

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT

GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC

**A**TGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG

TCTCGTGCTCGTCGCTTGAGGCTTGCGTTTA

TGCTCGTCGCTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT

TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

 ${\tt CTCTCGTGCTCGTCGCTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC}$ 

TCTCGTGCTCGTCGCTTGCGTTGAGGCTTGCGTTTA  $\mathsf{TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG}$ GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT TGCTCGTCGCTTGCGTTGAGGCTTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTTGCGTTTATGGTAC CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTTGAGGCTTGCGTTTTATGGTACGCTGGGCTTTTTT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT **ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT** ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

 $\tt CTCTCGTGCTCGTCGCTTGAGGCTTGCGTTT{\color{red}A}TGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC$ 



### ERROR RATE AND REPORTED QUALITY



### SYSTEMATIC BIASES



### SYSTEMATIC BIASES



### OUTLINE

- 1. Not all base-calls are equal!
- 2. Model-based base-calling
- 3. Model-based quality assessment
- 4. Results in genotyping pooled samples application

### ILLUMINA/SOLEXA

#### 7. DETERMINE FIRST BASE



The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

#### 8. IMAGE FIRST BASE



After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified.

#### 9. DETERMINE SECOND BASE



The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

### FLUORESCENCE INTENSITY



Four-channel fluorescence intensity, cycle 1



Four-channel fluorescence intensity, cycle 25

Color coded by call made: A, C, G, T



### SNP INTENSITIES



### **CHALLENGES**

- Base-calling is the result of a complicated procedure on noisy data
- Not all base-calls are made with the same certainty
- Statistical: What is the proper way of modeling this (un)certainty?
- Computational: Can we use this model at sec-gen data scale?
  - [Corrada Bravo, Irizarry. To appear, Biometrics, 2009]

### THE READ EFFECT



### INTENSITY MODEL



### BASE-CYCLE EFFECT



### QUALITY METRICS



### YIELD & ACCURACY

|                    | Bustard   | Seraphim  | %increase |
|--------------------|-----------|-----------|-----------|
| Total mapped reads | 5,096,667 | 5,686,797 | 11.5      |
| 0 mismatch         | 4,332,125 | 4,645,492 | 7.2       |
| 1 mismatch         | 514,635   | 688,880   | 33.8      |
| 2 mismatch         | 141,421   | 235,035   | 66.2      |

- Running MAQ pipeline, number of high quality SNPs (MAQ quality greater than 100)
  - Solexa: 37
  - Seraphim (us): 10
  - 70% fewer false positives
    - some of the remaining look real!





## GENOTYPING POOLED SAMPLES

- Pilot study for variant discovery in pooled samples
- Targeted sequencing of ~20 exons in GRIP2
- Multiplexed reads (12 multiplex pools),
   40 patients per pool (!!)

### PILOT STUDY ANALYSIS

- 1. One lane of Illumina GAII
- 2. Primary analysis by 1.3 Pipeline
- 3. Matched to GRIP2 exons with Bowtie Average coverage ~15x per allele
- 4. Pooled SNP calling by MAQ (quality over 185)

### PILOT STUDY (EXON 1)



### PILOT STUDY RESULT

- 201 SNPs called (MAQ quality over 185)
  - includes 19/20 known variants for these GRIP2 exons
- With our base-calls and log-entropy quality:
  - 5% increase in total matches
  - 80 SNPs called by MAQ
    - includes 18/20 known variants
- Verification: Under way

### MORE TO COME...

- Matching w/ probability profiles
- Genotyping from matched probability profiles
- Extension to SOLiD platform

### SOLID

#### Validation run (e-coli) color\_position distribution



### CONCLUSION

- Described model-based solution to handle uncertainty inherent in sec-gen data analysis
- Particularly important for genotyping
- Improved base-calling performance with interpretable model parameters (QA)

### ACKNOWLEDGEMENTS

JHU Biostatistics
Hao Wu
Harris Jaffee
Ben Langmead

JHU Medical Institutions
Sarah Wheelan
Sarven Sabunciyan

JHU Institute of Genetic Medicine
Tao Wang
Abby Adamczyk
Tejas Niranjani

Positions available: postdocs and programmers genomics@jhu.edu
www.genomics.jhu.edu