MODEL-BASED QUALITY

 Assessment And BASECALLING FOR SECONDGENERATION SEQUENCINGHÉctor Corrada Bravo \& RafaEl A. Irizarry BIOSTATISTICS DEPT.
Bloomberg School of Public Health Johns Hopkins University

NGS2009 BARCELONA OCT. 32009

A SET OF SHORT READS

> GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

MATCHING

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

SNPs

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
CTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

SNPs

TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT
GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG
CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

SNPs

ERROR RATE AND REPORTED QUALITY

SYSTEMATIC BIASES

SYSTEMATIC BIASES

OUTLINE

1. Not all base-calls are equal!
2. Model-based base-calling
3. Model-based quality assessment
4. Results in genotyping pooled samples application

ILLUMINA/SOLEXA

7. DETERMINE FIRST BASE

The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.
8. IMAGE FIRST BASE

After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified.
9. DETERMINE SECOND BASE

The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

FLUORESCENCE INTENSITY

Four-channel fluorescence intensity, cycle 1

Four-channel fluorescence intensity, cycle 25

Color coded by call made: A, C, G, T

SNPs

SNP INTENSITIES

CHALLENGES

- Base-calling is the result of a complicated procedure on noisy data
- Not all base-calls are made with the same certainty
- Statistical: What is the proper way of modeling this (un)certainty?
- Computational: Can we use this model at sec-gen data scale?
[Corrada Bravo, Irizarry. To appear, Biometrics, 2009]

THE READ EFFECT

INTENSITY MODEL

BASE-CYCLE EfFECT

QUALITY METRICS

Entropy

Yield \& Accuracy

	Bustard	Seraphim	\%increase
Total mapped reads	$5,096,667$	$5,686,797$	11.5
0 mismatch	$4,332,125$	$4,645,492$	7.2
1 mismatch	514,635	688,880	33.8
2 mismatch	141,421	235,035	66.2

SNPs

- Running MAQ pipeline, number of high quality SNPs (MAQ quality greater than 100)
- Solexa: 37
- Seraphim (us): 10
- 70% fewer false positives
- some of the remaining look real!

SNPs

Genotyping Pooled SAMPLES

- Pilot study for variant discovery in pooled samples
- Targeted sequencing of ~ 20 exons in GRIP2
- Multiplexed reads (12 multiplex pools), 40 patients per pool (!!)

Pilot Study AnAlysis

1. One lane of Illumina GAII
2. Primary analysis by 1.3 Pipeline
3. Matched to GRIP2 exons with Bowtie

Average coverage $\sim 15 x$ per allele
4. Pooled SNP calling by MAQ (quality over 185)

PILOT STUDY (EXON 1)

Position 190

$$
\begin{aligned}
& =\mathrm{A} \\
& = \\
& =\mathrm{C} \\
& = \\
& =
\end{aligned}
$$

Pilot Study Result

- 201 SNPs called (MAQ quality over 185)
- includes 19/20 known variants for these GRIP2 exons
- With our base-calls and log-entropy quality:
- 5% increase in total matches
- 80 SNPs called by MAQ
- includes 18 / 20 known variants
- Verification: Under way

MORE TO COME...

- Matching w/ probability profiles
- Genotyping from matched probability profiles
- Extension to SOLiD platform

SOLID

CONCLUSION

- Described model-based solution to handle uncertainty inherent in sec-gen data analysis
- Particularly important for genotyping
- Improved base-calling performance with interpretable model parameters (QA)

ACKNOWLEDGEMENTS

IHU Biostatistics
Hao Wu
Harris Jaffee
Ben Langmead

IHU Medical Institutions

 Sarah WheelanSarven Sabunciyan
JHU Institute of Genetic Medicine Tao Wang
Abby Adamczyk Tejas Niranjani

Positions available: postdocs and programmers genomics@jhu.edu www.genomics.jhu.edu

