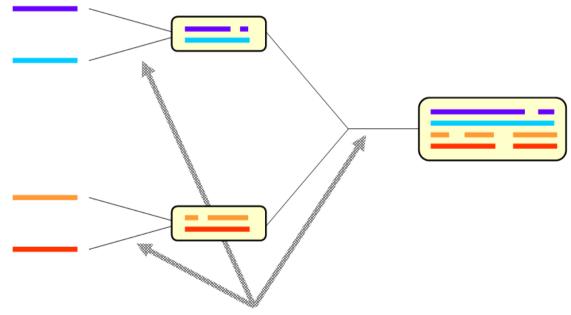

# Upcoming Challenges for Multiple Sequence Alignment Methods

**Cédric Notredame** Comparative Bioinformatics Group Bioinformatics and Genomics Program




# What is NGS sequencing changing for Regular Biology ?

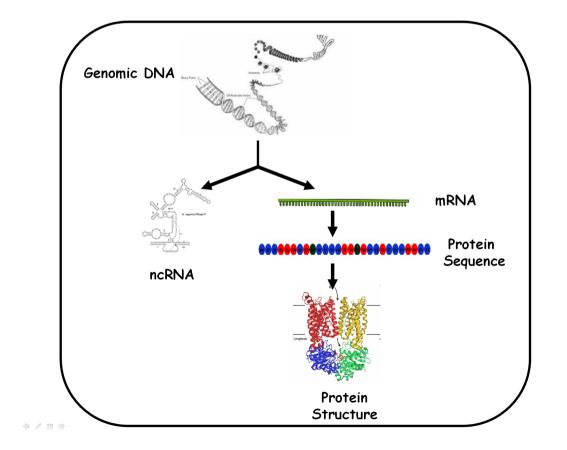
|                                      | Berton Campus     Reyword search (Go)       SP120 (PF00516)     10       10     75195       3     interactions 95       3     interactions 95       3     interactions 95       4     10       3     interactions 95       4     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10       5     10 <t< th=""><th>es</th><th>75195<br/>sequences</th><th>3</th></t<> | es | 75195<br>sequences | 3 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------|---|
| Summary                              | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | sequences          |   |
| Domain<br>organisation<br>Alignments | Envelope glycoprotein GP120       Add annotation         No image available       View a different structure:         The entry of HIV requires interaction of viral GP120 with P01730 E <sup>3</sup> and a       Topt v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                    |   |
| HMM logo                             | chemokine receptor on the cell surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                    |   |
| Trees                                | Literature references                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                    |   |
| Curation &<br>models<br>Species      | <ol> <li>Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA; ,<br/>Nature 1998;393:648-659.: Structure of an HIV gp120 envelope<br/>glycoprotein in complex with the CD4 receptor and a neutralizing human<br/>antibody. <u>PUBMED:9641677</u> e<sup>3</sup></li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                    |   |
| Interactions                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                    |   |
| Structures                           | Interpro entry IPR000777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                    |   |
| Jump to 🕸                            | The entry of HIV requires interaction of viral GP120, an envelope glycoprotein with human T-cell surface glycoprotein CD4 and a chemokine receptor on the cell surface. These envelope glycoproteins are found in HIV types 1 and 2, and Simian Immunodeficiency virus (SIV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                    |   |
| enter ID/acc Go                      | Gene Ontology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                    |   |
|                                      | Cellular component viral envelope (GO:0019031)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                    |   |
|                                      | Internal database links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                    |   |
|                                      | SCOOP: <u>APG12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                    |   |

### Aligning Very Large Datasets is Challenging

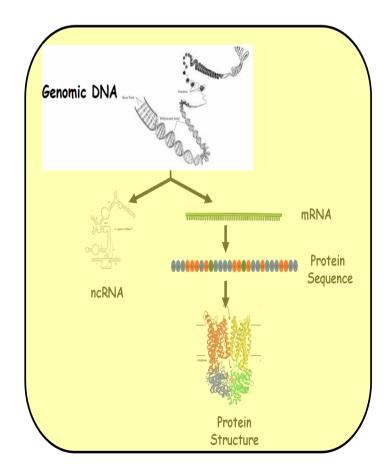
Feng and Dolittle, 1980; Taylor 1981



Dynamic Programming Using A Substitution Matrix

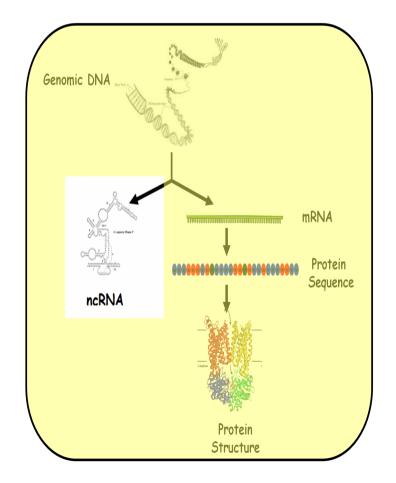

Ref.20\_BG.ES.99.R77.AY586544 Ref.21 A2D.KE.91.KNH1254.AY945737 Ref.21\_A2D.KE.99.KER2003.AF457051 Ref.22 01A1.CM.01.01CM 0001BBY.AY371159 Ref.23\_BG.CU.03.CB118.AY900571 Ref.23 BG.CU.03.CB347.AY900572 Ref.24\_BG.CU.03.CB378.AY900574 Ref.24 BG.CU.03.CB471.AY900575 Ref.25\_cpx.CM.06.06CM\_BA\_040.EU693240 Ref.25 cpx.SA.03.J11233.EU697906 Ref.25\_cpx.SA.03.J11451.EU697908 Ref. 27 cpx.CD. 97.97CDKTB49.AJ404325 Ref.27\_cpx.FR.04.04CD\_FR\_KZS.AM851091 Ref. 28 BF. BR. 99. BREPM12313. DQ085872 Ref.28\_BF.BR.99.BREPM12609.DQ085873 Ref. 28 BF. BR. 99. BREPM12817. DQ085874 Ref.29\_BF.BR.01.BREPM16704.DQ085876 Ref. 29 BF. BR. 99. BREPM11948. DQ085871 Ref.31\_BC.BR.02.110PA.EF091932 Ref.31 BC.BR.04.04BR142.AY727527 Ref.32\_06A1.EE.01.EE0369.AY535660 Ref.33 01B.MY.05.05MYKL007 1.DQ366659 Ref.33\_01B.MY.05.05MYKL045\_1.DQ366662 Ref.34 01B.TH.99.OUR2478P.EF165541 Ref.35\_AD.AF.05.05AF026.EF158043 Ref.35 AD.AF.05.05AF094.EF158040 Ref.36\_cpx.CM.00.00CMNYU1162.EF087995 Ref.36 cpx.CM.00.00CMNYU830.EF087994 Ref.37\_cpx.CM.00.00CMNYU926.EF116594 Ref. 37 cpx.CM. 97.CM53392.AF377957 Ref.39\_BF.BR.03.03BRRJ103.EU735534 Ref. 39 BF. BR. 03. 03BRRJ327. EU735536 Ref.39\_BF.BR.04.04BRRJ179.EU735535 Ref. 40 BF. BR. 04. 04BRRJ115. EU735538 Ref.40\_BF.BR.04.04BRSQ46.EU735540 Ref.40\_BF.BR.05.05BRRJ200.EU735539 Ref.42\_BF.LU.03.luBF\_05\_03.EU170155 Ref.43\_02G.SA.03.J11223.EU697904 Ref.43\_02G.SA.03.J11243.EU697907 Ref.43\_02G.SA.03.J11456.EU697909 Ref.N.CM.02.DJ00131.AY532635 Ref.N.CM.95.YBF30.AJ006022 Ref.N.CM.97.YBF106.AJ271370 Ref.O.BE.87.ANT70.L20587

| TGTGGAAAGGAGGGACATCAAATGAAAGACTGCACA     | GAGAG      |
|------------------------------------------|------------|
| TGTGGAAGGGAAGGGCACCAAATGAAAGATTGTACG     | GAGAG      |
| TGTGGAAAGGAAGGGCACCAAATGAGAGATTGCACG     | GAAAG      |
| TGTGGGAAGGAAGGACACCAAATGAAAGACTGCACTCTTA | CTCTTGAGAG |
| TGTGGAAAGGATGGACATCAAATGAAAGACTGCACA     | GAAGGGAG   |
| TGTGGAAAGGAGGGACATCAAATGAAAGACTGCACA     | GAGAG      |
| TGTGGAAAGGAGGGACATCAAATGAAAGACTGCACA     | GAGAG      |
| TGTGGAAGGGAGGGACATCAAATGAAAGACTGCACA     | GAGAG      |
| TGTGGGAAAGAAGGACATCAGATGAAAGACTGCACA     | GAGAG      |
| TGTGGAAAGGAGGGACATCAAATGAAAGACTGCACG     | GAGAG      |
| TGTGGGAAGGAGGGACATCAAATGAAAGACTGCACR     | GARAG      |
| TGTGGAAAGGAGGGACATCAAATGAAAGACTGTACA     | GAGAG      |
| TGTGGAAGAGAGGGACATCAAATGAAAGACTGTACA     | GAGAG      |
| TGTGGAAGAAGGACACCAAATGAAAGACTGTACT       | GAAAG      |
| TGTGGAAGAAGGACACCAAATGAAAGATTGCACT       | GAAAG      |
| TGTGGAAAGGAAGGACATCAAATGAAAGACTGCACT     | GAAAG      |
| ТСТССААААССАСССАААТСАААССАСТ             | GAAAG      |
| ТСТССААСАСААССАААТСАААСАССАСТ            | GAAAG      |
| ТСТССААААСААССАССАААТСАААСААТСТАСТ       | GAGAG      |
| ТСТССАААССААССАААТСАААСАСТСТААТ          |            |
| TGTGGACAGGAAGGCCATCAAATGAAAGACTGCACT-    | Głgag      |
| TGTGGGAAGGAAGGACATCAAATGAAAGATTGTACT     | GAGAG      |
| TGTGGGCAGGAAGGACATCAAATGAAAGATTGTACC     | GAGAG      |
| TGTGGGAAGGAAGGACATCAAATGAAAGACTGCACT     | GAGAA      |
| TGTGGGAAAGAAGGACACCAAATGAAAGACTGCACT     | GAGAG      |
| TGTGGGAAAGAAGGACACCAAATGAAAGACTGCACT     | GAGAG      |
| TGTGGGAAGGAAGGACACCGAATGAAAGACTGCACT     |            |
| TGTGGGAAGGAAGGACACCAAATGAAAGACTGCACT     |            |
| TGTGGAAAGGAAGGACACCAAATGAAAGACTGCACT     | GAGAG      |
| TGTGGGAAGGAAGGACACCAAATGAAAGACTGCACT     | GAAAG      |
| TGTGGAAAGGAAGGACACCAAATGAAAGAATGCACA     | GAGAG      |
| TGTGGAAAGGAAGGACACCAAATGAAAGATTGTGTG     | GAGAG      |
| TGTGGAAAGGAAGGACACCAAATGCTAGACTGTACT     | GAAAG      |
| TGTGGAAGAAGGACACCAAATGAAAGATTGTACT       | GAGAG      |
| TGTGGAAAAGAAGGACACCAAATGAAAGATTGTACT     | GAGAG      |
| TGTGGAAAAGAAGGACACCAAATGAAAGATTGTGAT     | ATGAG      |
| TGTGGAAGAGAGGGACACCAAATGAAAGACTGCACT     | GAAAG      |
| TGTGGAAAGGAGGGACATCAAATGAAAGACTGCACA     | GAAAG      |
| TGTGGAAAGGAGGGACATCAAATGAAAGAATGCACA     | GAGAG      |
| TGTGGAAGGGAGGGACATCAAATGAAAGACTCCACA     | GAGAG      |
| TGTGGGCAAGAAGGACATCAAATGAAAGATTGTAAAAAT  |            |
| TGTGGGCAAGAAGGACATCAAATGAAAGATTGTAAAAAT  | GAAGGAAG   |
| TGTGGGCAAGAAGGACATCAAATGAAAGATTGTAAAAAT  | GAGGGAAG   |
| TGTGGACAGGAAGGTCACCAAATGAAAGATTGCAGAAAT  | GGAAA      |


# **Recent Evolutions**

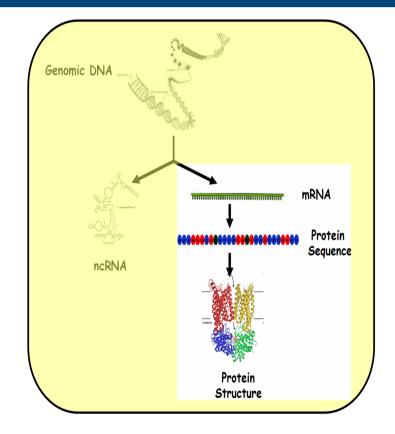
- Consistency
- Model based alignment
- Meta-methods

# Which Tool for Which Sequence ?




# Is it Possible to Compare all Types of Sequences ?




- Non Transcribed World
  - Genes/Full Genomes
    - Lagan, TBA, Pecan
  - Promoter Regions
    - Meta-Aligner
    - Motifs Finders
  - Nucleosome
    - ???
- Multiple Genome Aligners
  - Not Very Accurate
  - Very Fast
  - Deal with rearrangements

# Is it Possible to Compare all Types of Sequences ?



- RNA Comparison
  - Less Accurate than Proteins
  - Secondary Structures
- ncRNA World
  - Consan
  - R-Coffee

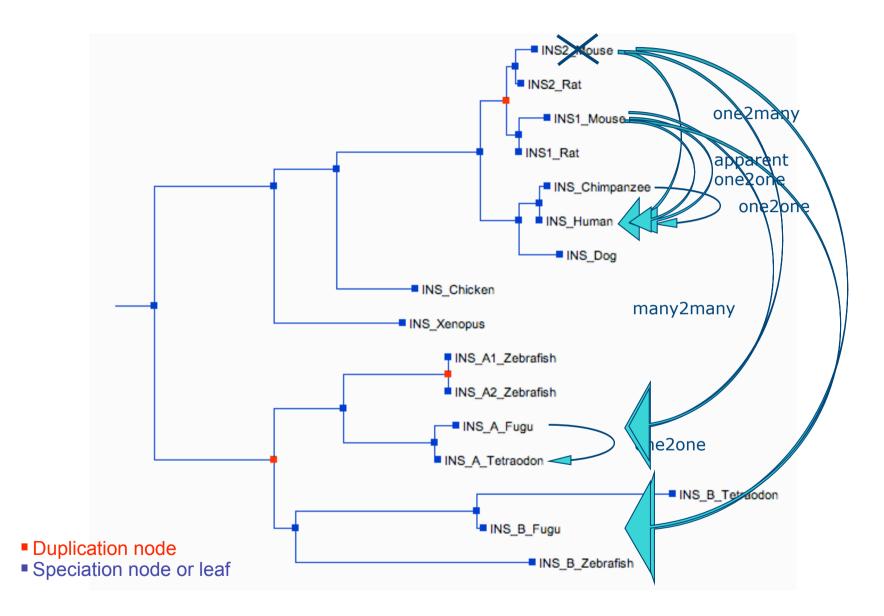
# Is it Possible to Compare all Types of Sequences ?



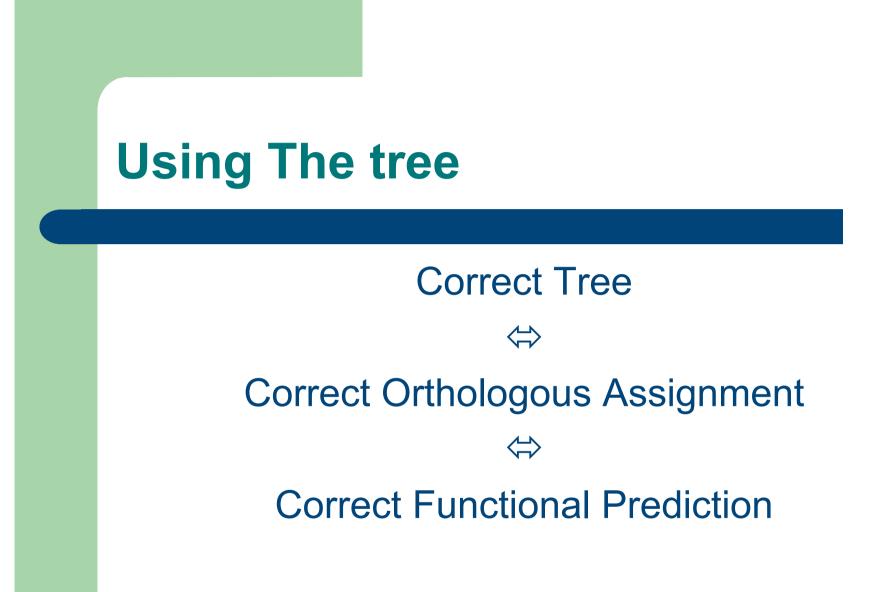
- Protein Comparisons
  - Very Accurate
  - 3D-Structure Improves it
- Protein Aligners
  - ClustalW
  - Muscle
  - Mafft
  - T-Coffee
  - 3D-Coffee

#### What Changes with 1000 Genomes?




# **Phylogeny Vs Function**

#### • Function


- Low level => Biochemistry => Protein Domains
- High Level => Metabolic Pathway => Orthology

#### Orthology

- Phylogenetic Analysis
- Phylogenetic Analysis =>Accurate Alignments



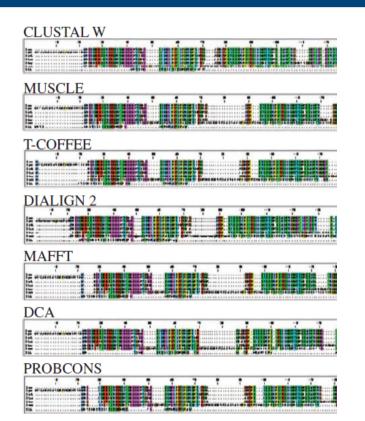
(Adpated from "Going beyond AGC and T, E. Birney)

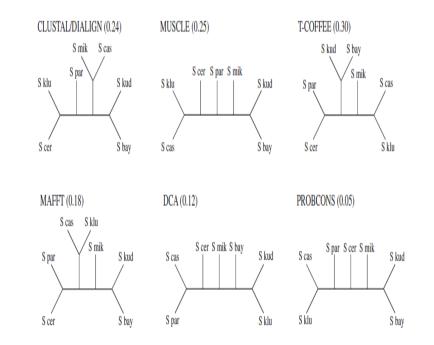


# **Trees Vs Alignments**

**1:** <u>Science.</u> 2008 Jan 25;319(5862):473-6.

Alignment uncertainty and genomic analysis.


Wong KM, Suchard MA, Huelsenbeck JP.


1: <u>Science.</u> 2008 Jun 20;320(5883):1632-5.

Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis.

Löytynoja A, Goldman N.

#### Phylogenetic Trees and Multiple Sequence Alignments





Alignment Uncertainty and Genomic Analysis

Karen M. Wong,<sup>1</sup> Marc A. Suchard,<sup>2</sup> John P. Huelsenbeck<sup>3\*</sup>

# **Genomic Era: The Goal**

- 10.000 Sequences: interspecies
- 1 Billion: Re-sequencing
- Incorporation of ALL experimental Data
  - Structure, Genomic, Chlp-Chip, Chlp-Seq...
- Alignments suitable for all applications of comparative genomics
  - Homology Modeling (function)
  - Functional Analysis
  - Phylogenetic Reconstruction
  - 3D-Modelling
- Accurate Alignments for ALL kind of data
  - Non Transcribed DNA
  - Transcribed DNA
  - Translated DNA

# **Genomic Era Challenges**

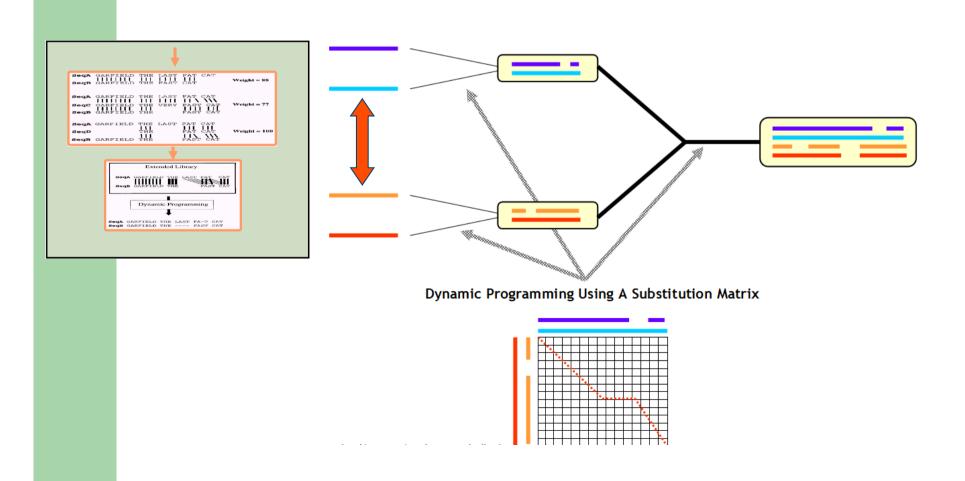
| <ul> <li>Accuracy         <ul> <li>Proteins: 30% is the limit</li> <li>DNA/RNA 70% is the limit</li> </ul> </li> </ul> | <ul> <li>Data Integration         <ul> <li>Structure</li> <li>Homology</li> <li>Genomic Structure</li> </ul> </li> </ul> |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Scale                                                                                                                  | <ul> <li>Genomic Structure</li> <li>Function</li> <li>Proteomics</li> </ul>                                              |  |  |
| <ul> <li>Over 100 sequences<br/>algorithms lose in accuracy</li> </ul>                                                 | <ul> <li>Methods         <ul> <li>Wealth of alternative methods</li> <li>Poorly Characterized</li> </ul> </li> </ul>     |  |  |

#### Method and Data Integration With Consistency Based Methods

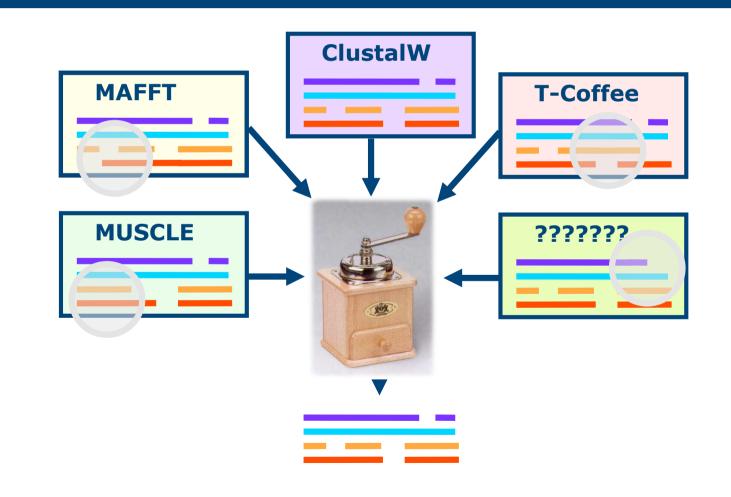
# **Consistency and Data Integration**

- Most methods rely on the progressive algorithm
- Consistency based methods have been designed as an extension
- Consistency based alignment methods have been designed to:
  - Better extract the signal contained in the data
  - Integrate/Confront existing methods
  - Integrate/Confront heterogeneous types of Information

### **T-Coffee and Concistency...**


| SeqA GARFIELD THE LAST FAT CAT Prim. Weigh<br>SeqB GARFIELD THE FAST CAT       | nt =88  |
|--------------------------------------------------------------------------------|---------|
| SeqA GARFIELD THE LAST FA-T CAT Prim. Weigh<br>SeqC GARFIELD THE VERY FAST CAT | nt =77  |
| SeqA GARFIELD THE LAST FAT CAT Prim. Weigh<br>SeqD THE FAT CAT                 | nt =100 |
| SeqB GARFIELD THE FAST CAT Prim. Weigh<br>SeqC GARFIELD THE VERY FAST CAT      | nt =100 |
| SeqC GARFIELD THE VERY FAST CAT Prim. Weigh<br>SeqD THE FA-T CAT               | nt =100 |

### **T-Coffee and Concistency...**


| - | GARFIELD<br>GARFIELD |  | Prim. | Weight =88  |
|---|----------------------|--|-------|-------------|
| - | GARFIELD<br>GARFIELD |  | Prim. | Weight =77  |
| - | GARFIELD             |  | Prim. | Weight =100 |
| - | GARFIELD<br>GARFIELD |  | Prim. | Weight =100 |
| - | GARFIELD             |  | Prim. | Weight =100 |
|   |                      |  |       |             |

| -    | GARFIELD<br>GARFIELD             |     |      |                 | Weight =88  |
|------|----------------------------------|-----|------|-----------------|-------------|
| SeqC | GARFIELD<br>GARFIELD<br>GARFIELD | THE | VERY | FAST CAT        | Weight =77  |
| SeqD | GARFIELD<br>GARFIELD             | THE |      | FA-T <b>CAT</b> | Weight =100 |

### **T-Coffee and Consistency...**



### M-Coffee Combining Many MSAs into ONE



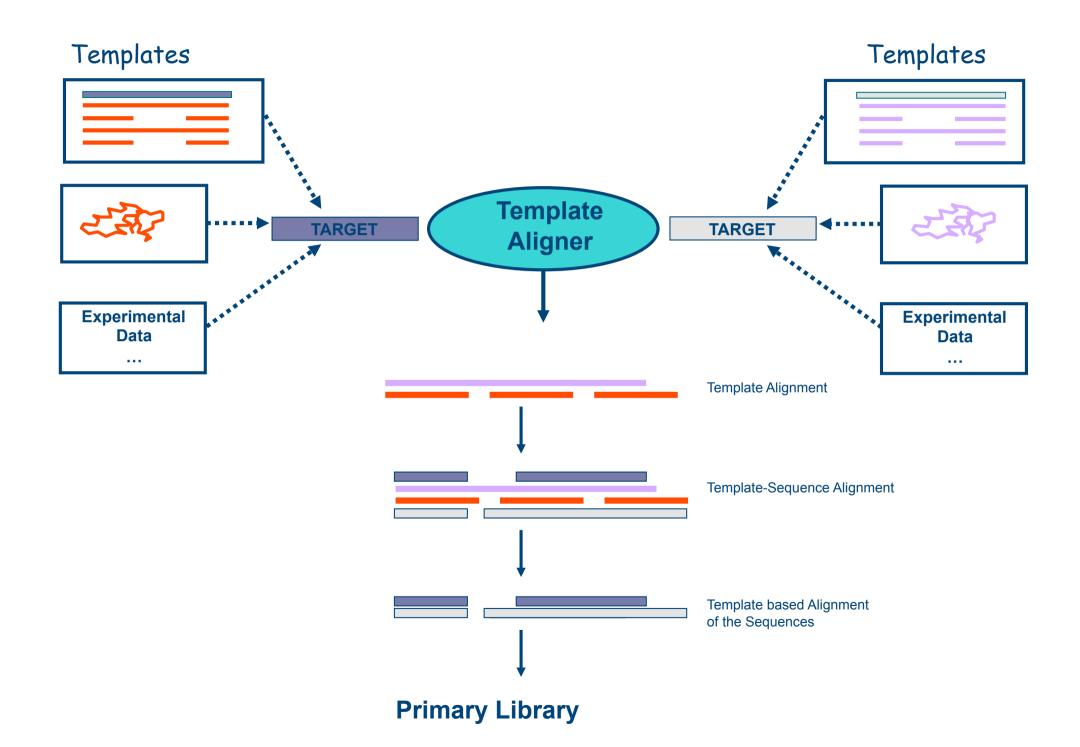
### **Consistency and Accuracy**

| 1.1               |                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------|
| 1thx_             | PCQLMSPLINLAANTYSdrlkvVKLEIdpn                                                               |
| 1grx_             | YSVRAKDLAEKLSNERddfqyqyvdiraegit                                                             |
| lerv_             | PCKMIKPFFHSLSEKYsnvifLEVDVddc                                                                |
| 1a81              | ycplavrmahkfaientkagKgkilgdmveaiey                                                           |
| 1ewx A            | PCRGFTPQLIEFYDKFhesknfevVFCTWdeeedgfag <mark>yfa</mark> kmpwla                               |
| 1j0f_A            | eiksqqsevtrildgkr <mark>iqyqlvdisqd</mark>                                                   |
| 2trc_P            | GCDALNSSLECLAAEYpxvkfCKIRAsnt                                                                |
| 1jfu_A            | PCRKEMPALDELQGKLsgpnfevVAINIdtrdpekpktflkeanltrlgyf                                          |
| 1kng_A            | PCHDEAPLLTELGKdkrfqlvginykda <mark>adnarr</mark> -flgrygnpfgrvgv                             |
| 1se1 <sup>A</sup> | ASKEFEKYTFSdpqvqkaladtvllqanvtandaqdv                                                        |
| 1mek              | HCKALAPEYAKAAGKLkaeg-seirlAKVDAtee                                                           |
|                   |                                                                                              |
| cons              |                                                                                              |
|                   |                                                                                              |
|                   |                                                                                              |
|                   |                                                                                              |
| 1thx              | <mark>pttvkky<mark>KVEGVPALRL</mark>VKG-<mark>E</mark>QILDSTEGVi<mark>skdk</mark></mark>     |
| 1grx              | <mark>kedlqqkag<mark>KPVETVPQIFvd</mark>qqhiggytdfaaw</mark>                                 |
| lerv              | <mark>qdvasec</mark> <mark>EVKSMPTFQFFKK</mark> - <mark>G</mark> QKVGEFSGan <mark>kek</mark> |
| 1a81              | <mark>pewadqy</mark> <mark>NVMAVPKIVIQVN</mark> -G <mark>EDRVEFEGAy</mark> pekm              |
| 1ewx A            | vpfaqseavqklskh <mark>FNVESIPTLIGVDA</mark> dsgdvvttra                                       |
| 1j0f A            | nalrdemrtlagNPKATPPQIvngnhycgdyel                                                            |
| 2trc P            | gagdrfSSDVLPTLLVYKG-GELISNFISVaEQfAEDffaad                                                   |
| 1jfu A            | ndqkakvfqdlkaig-RALGMPTSVLVDPQGCEIATIAGPaewased                                              |
| 1kng A            | dangrasiewGVYGVPETFVVGREGTIVYKLVGPiTPDnlrsv                                                  |
| 1sel A            | allkhlfmdae                                                                                  |
| 1mek              | sdlaqqygVRGYPTIKFFR-nGDTaspkeytagreadd                                                       |
| _                 |                                                                                              |
|                   |                                                                                              |
| cons              |                                                                                              |

| SCORI | E=34 |    |    |
|-------|------|----|----|
| BAD   | AVG  | GO | OD |
|       |      |    |    |
| 1thx  |      | :  | 48 |
| 1grx  |      | :  | 41 |
| 1erv  |      | :  | 47 |
| 1a81  |      | :  | 28 |
| 1ewx  |      |    | 32 |
| 1j0f  |      |    | 10 |
| 2trc  |      |    | 27 |
| 1jfu  |      | 1  | 38 |
| 1kng  |      | 1  | 35 |
| 1se1  |      | ÷  | 28 |
|       | A    |    |    |
| 1mek  |      | :  | 43 |
| cons  |      | :  | 34 |

```
ENSEMBL-Dev Release 53
Summary of Declaration of intentions
```

Homologies and families


\_\_\_\_\_

\* Update for the new/updated genebuilds and assembly.

\* Replace current clustering method with hcluster for the GeneTrees.

•Replace current Muscle MSA method with MCoffee. MCoffee uses a combination of MAFFT-INS, Muscle, Kalign and Probcons to create a meta-alignment that is a consensus of all methods.

\* Sitewise dN/dS: we will provide calculation for dN/dS ratios for the(sub)trees that are not dS saturated.



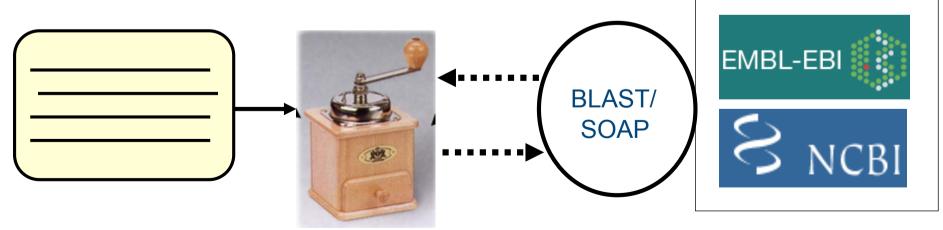
# **Exploring The Template World**

| Template             | Generator  | Alignment<br>Method | Mode        |
|----------------------|------------|---------------------|-------------|
| <b>RNA Structure</b> | Prediction | RNA Aligner         | R-Coffee    |
| Protein Structure    | BLAST /PDB | 3D Aligner          | 3D-Coffee   |
| Profile              | BLAST/NR   | Profile/Profile     | PSI-Coffee  |
| Gene Structure       | ENSEMBL    | Genome Aligner      | Exoset      |
| Promoter             | Transfac   | Meta-Aligner        | Meta-Coffee |

| Method     | Method      | Template | Score | Comment       |
|------------|-------------|----------|-------|---------------|
| ClustalW-2 | Progressive | NO       | 22.74 |               |
| PRANK      | Gap         | NO       | 26.18 | Science2008   |
| MAFFT      | Iterative   | NO       | 26.18 | Consistence   |
| Muscle     | Iterative   | NO       | 31.37 | Consistency — |
| ProbCons   | Consistency | NO       | 40.80 |               |
| ProbCons   | MonoPhasic  | NO       | 37.53 |               |
| T-Coffee   | Consistency | NO       | 42.30 |               |
| M-Coffe4   | Consistency | NO       | 43.60 |               |
| PSI-Coffee | Consistency | Profile  | 53.71 |               |
| PROMAL     | Consistency | Profile  | 55.08 |               |
| PROMAL-3D  | Consistency | PDB      | 57.60 |               |
| 3D-Coffee  | Consistency | PDB      | 61.00 | Expresso      |

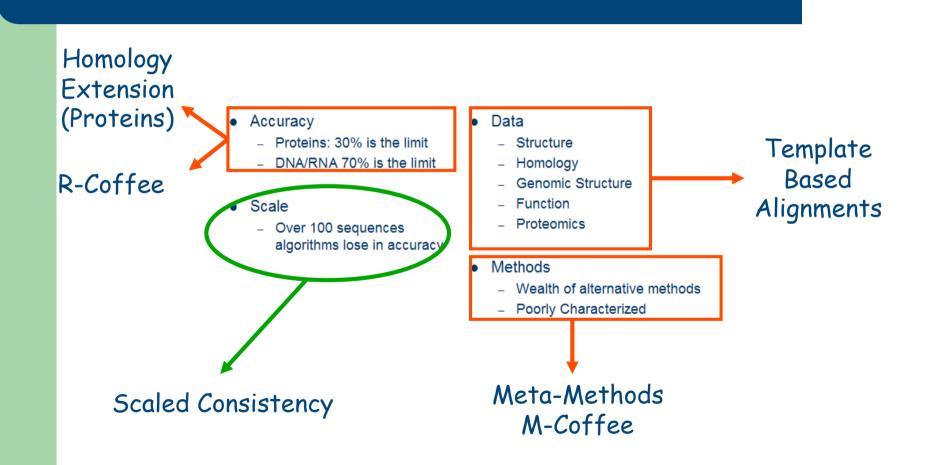
**Score:** fraction of correct columns when compared with a structure based reference (BB11 of BaliBase).

| Method     | Method      | Template | Score | Comment         |
|------------|-------------|----------|-------|-----------------|
| ClustalW-2 | Progressive | NO       | 22.74 |                 |
| PRANK      | Gap         | NO       | 26.18 | Science2008     |
| MAFFT      | Iterative   | NO       | 26.18 |                 |
| Muscle     | Iterative   | NO       | 31.37 |                 |
| ProbCons   | Consistency | NO       | 40.80 | alaou Extancion |
| ProbCons   | MonoPhasic  | NO       | 37.53 | ology Extension |
| T-Coffee   | Consistency | NO       | 42.30 |                 |
| M-Coffe4   | Consistency | NO       | 43.60 |                 |
| PSI-Coffee | Consistency | Profile  | 53.71 |                 |
| PROMAL     | Consistency | Profile  | 55.08 |                 |
| PROMAL-3D  | Consistency | PDB      | 57.60 |                 |
| 3D-Coffee  | Consistency | PDB      | 61.00 | Expresso        |


<u>Score</u>: fraction of correct columns when compared with a structure based reference (BB11 of BaliBase).

| Method     | Method      | Template | Score | Comment          |
|------------|-------------|----------|-------|------------------|
| ClustalW-2 | Progressive | NO       | 22.74 |                  |
| PRANK      | Gap         | NO       | 26.18 | Science2008      |
| MAFFT      | Iterative   | NO       | 26.18 |                  |
| Muscle     | Iterative   | NO       | 31.37 |                  |
| ProbCons   | Consistency | NO       | 40.80 | ctural Extensior |
| ProbCons   | MonoPhasic  | NO       | 37.53 |                  |
| T-Coffee   | Consistency | NO       | 42.30 |                  |
| M-Coffe4   | Consistency | NO       | 43.60 |                  |
| PSI-Coffee | Consistency | Profile  | 53.71 |                  |
| PROMAL     | Consistency | Profile  | 55.08 |                  |
| PROMAL-3D  | Consistency | PDB      | 57.60 |                  |
| 3D-Coffee  | Consistency | PDB      | 61.00 | Expresso         |

<u>Score</u>: fraction of correct columns when compared with a structure based reference (BB11 of BaliBase).


# **T-Coffee and The World**

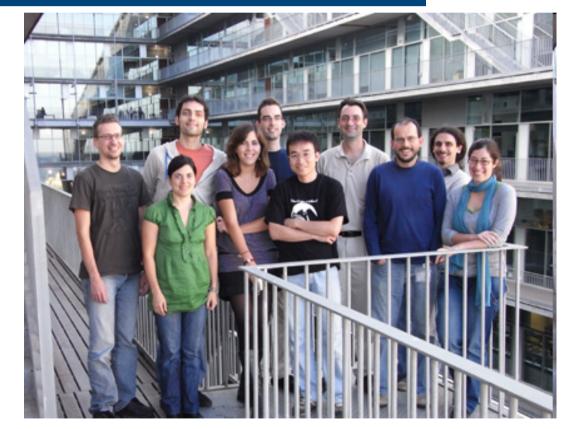
-Some Templates are obtained with a BLAST -Queries can be sent to the EBI or the NCBI -No Need for a Local BLAST installation



Users sequences

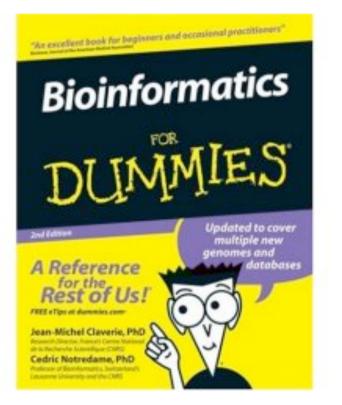
#### Genomic Era Challenges Conclusion




# **Open Questions**

- Accurately Aligning non transcribed DNA
- Accurately aligning ncRNA
- Scaling up consistency based methods with large numbers of sequences

• Coping with Large Number of Re-sequenced Genomes


# **Comparative Bioinformatics**

- University College Dublin
  - Des Higgins
  - Orla O'Sullivan
  - Iain Wallace (UCD, IE)
- Berlin Free University
  - Knut Reinert
  - Tobias Rausch
- Swiss Intitute of Bioinformatics
  - Ioannis Xenarios
  - Sebastien Morreti
- Comparative Bioinformatics
  - Merixell Oliva
  - Giovanni Bussoti
  - Carsten Kemena
  - Emanuele Rainieri
  - Ionas Erb
  - Jia Ming Chang
  - Matthias Zytneki



www.tcoffee.org cedric.notredame@crg.es

# www.tcoffee.org



| Mirror sites: Maffee | - 😽 QBI . | 🗶 🥵 💬    |             |   |
|----------------------|-----------|----------|-------------|---|
| ALIGNMENT            |           |          |             |   |
| TCOFFEE              | Regular   | Advanced | <u>cite</u> | 2 |
| EXPRESS0(3DCoffee)   | Regular   | Advanced | <u>cite</u> | 2 |
| MCOFFEE              | Regular   | Advanced | <u>cite</u> | 2 |
| RCOFFEE              | Regular   | Advanced | <u>cite</u> | 2 |
| COMBINE              | Regular   | Advanced | <u>cite</u> | 2 |
| EVALUATION           |           |          |             |   |
| CORE                 | Regular   | Advanced | <u>cite</u> | 2 |
| iRMSD-APDB           | Regular   | Advanced | <u>cite</u> | 2 |
| PROCESSING           |           |          |             |   |
| PROTOGENE            | Regular   | Advanced | <u>cite</u> | 2 |

<u>www.tcoffee.org</u> cedric.notredame@europe.com