HIGH THROUGHPUT SEQUENCING ANALYSIS OF LINKAGE ASSAY-IDENTIFIED CANDIDATE REGIONS IN FAMILIAL BREAST CANCER:

METHODS, ANALYSIS PIPELINE AND TROUBLESHOOTING

Juan Manuel Rosa-Rosa

Human Gentetics Group Spanish National Cancer Research Cent

NGS Conference, October 2009, Barcelona

Deep Sequencing: Generalities

Material and Methods

www.www

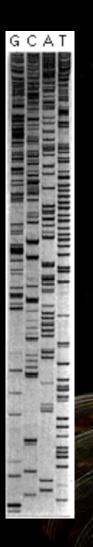
A T C C T C G G C G G C A C C C T C T C A T C C T G C C G C C C C C C T C T G C A T G G T G C C G C C T C T C 320

CCCTGCTGGCGCTGCCCCAAGACC

Breast Cancer: Generalities

Results⁷///

... EVOLUTION ...


Linkage Studies: Generalities

Objectives

Conclusions

Deep sequencing is

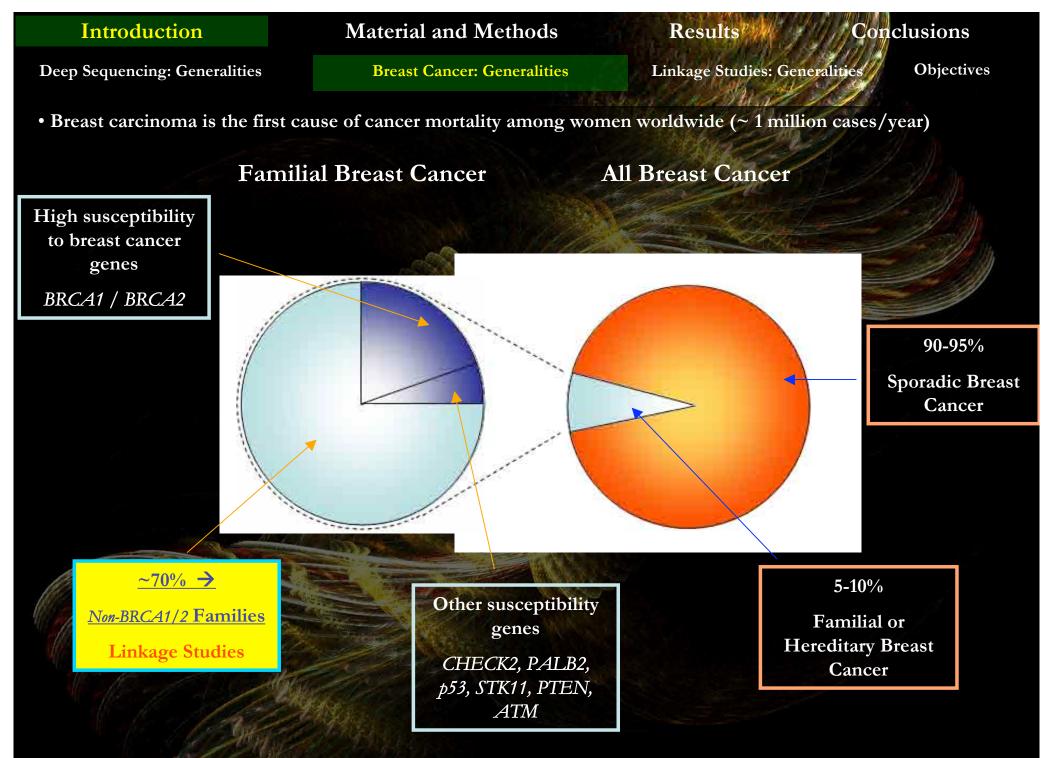
C CAGTGCCAGATCTACCGAT

@HANNIBAL_1_FC30ACCAAXX:2:1:14:776
AGCAGCATCATTCATAATACCCAAAACGTAG
+

>AB@>@BB@2?BBBBBB@9AB?2<<@<2,6?! @HANNIBAL_1_FC30ACCAAXX:2:1:14:774 AGCAGCATCATTCATAATACCCAAAACGTAG

=BBBBBBB;@ABBB=BBBBBB???BBBBB33! @HANNIBAL_1_FC30ACCAAXX:2:1:15:1095 AGTGCTATGATTACAGGTGTGAGCCACTGCG

BBBBBCBBBBBCBB@>9ABBB>>>BBBB@9>! @HANNIBAL_1_FC30ACCAAXX:2:1:15:1081 AAAAGGACTTACCAATGATAGAAAAATTGCT


=BBB9<@B@?<???=B?2?@3'9B>;>>>@B! @HANNIBAL_1_FC30ACCAAXX:2:1:15:1387 AAAACCCACTTTCCCCATTTGCTCTGTAAAT

9<BBBBBBA9ABBBBBBBBBB?+<BBBB?=?! @HANNIBAL_1_FC30ACCAAXX:2:1:15:1712 AATGGAATGGAATGGAATGGAATGGAATGGA

BBA<*<CA>;9BA;><?B;9?<47@BBB6'6! @HANNIBAL_1_FC30ACCAAXX:2:1:15:747 ATATGATTCATCTGTTAGTTGTCACAAAATA

B6,9'.9B2;@BBB@=.,;6',6BB??<BBB!
@HANNIBAL_1_FC30ACCAAXX:2:1:15:618
CCTGTAATTCCAGCTACTCGTGAGGCTGAGG</pre>

... however, evolution has some costs ...

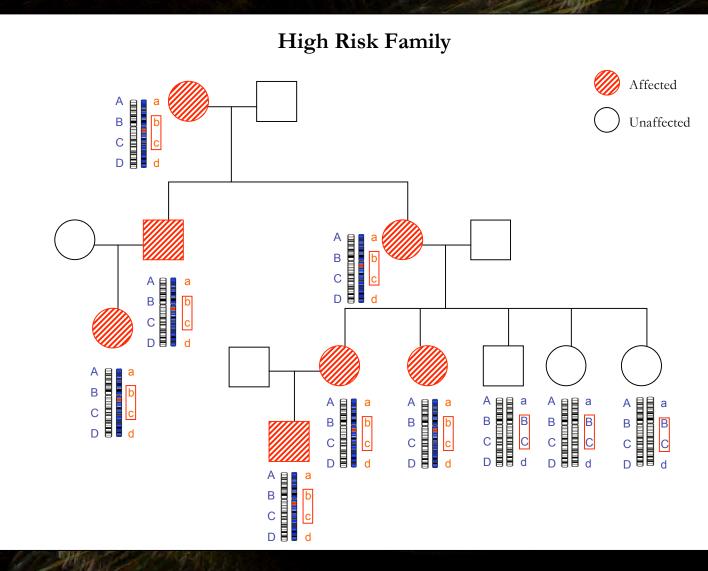
	- C		1		. •	
	101	10		uc	111	\mathbf{n}
			JUL			
-						

Deep Sequencing: Generalities

Material and Methods

Breast Cancer: Generalities

Results


Barrie & R. B. M. M. M.

Linkage Studies: Generalities

Objectives

Conclusions

Concept of Affected-Haplotype Sharing

T .	1	1 .	•
nt	100	luct	10n
		uuu	

Deep Sequencing: Generalities

Material and Methods

Breast Cancer: Generalities

Linkage Studies: Generalities

Results

and a contract

Objectives

Conclusions

Linkage Study on *non-BRCA1/2* families

Samples

132 samples from

41 non-BRCA1/2 families

Methods

5800 SNPs (Linkage Panel 4.0)

1 SNP / 500 kb

Results

	Chromosome	Region	From	То	NPL(Max)	p value	Par Dom
chr3 & chr6: suggestive linkage	3	q25.33-q26.2	rs1472578	rs1920122	2.46	0.007	3.01
	6	q24.3-q25.1	rs612928	rs1407491	2.65	0.004	2.26
chr21: significant linkage	21	q22.13	rs1012959	rs2836301	4.37	0.00001	3.55

Families selected as putatively linked to each candidate region :

chr 3 \rightarrow 6 families

chr 6 \rightarrow 5 families

chr21 \rightarrow 5 families

Rosa-Rosa et al. Am J Hum Genet, 2009

Introduction

Deep Sequencing: Generalities

Material and Methods

Breast Cancer: Generalities

Results²///

Linkage Studies: Generalities

Objectives

Conclusions

Exon-capture assay

Nature Genetics 39, 1522 - 1527 (2007) Published online: 4 November 2007 | doi:10.1038/ng.2007.42

Genome-wide in situ exon capture for selective resequencing

Emily Hodges^{1,4}, Zhenyu Xuan^{1,2,4}, Vivekanand Balija², Melissa Kramer², Michael N Molla³, Steven W Smith³, Christina M Middle³, Matthew J Rodesch³, Thomas J Albert³, Gregory J Hannon¹ & W Richard McCombie²

960 | VOL.4 NO.6 | 2009 | NATURE PROTOCOLS

Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing

Emily Hodges^{1,2}, Michelle Rooks^{1,2}, Zhenyu Xuan¹, Arindam Bhattacharjee³, D Benjamin Gordon³, Leonardo Brizuela³, W Richard McCombie¹ & Gregory J Hannon^{1,2}

Enrichment of specific sequences through CGH tiling arrays for selective resequencing

Introduction

Material and Methods

Results

Deep Sequencing: Generalities Brea

Breast Cancer: Generalities

Linkage Studies: Generalities

Objectives

Conclusions

A pilot project linking CNIO and CSHL

- Mutational screening in the coding sequence of all the genes located on both *suggestive* candidate regions (chromosomes 3 and 6) identified in our linkage study

- Practical application of exon-capture assay

- Improvement in the data analysis pipeline

Results

Conclusions

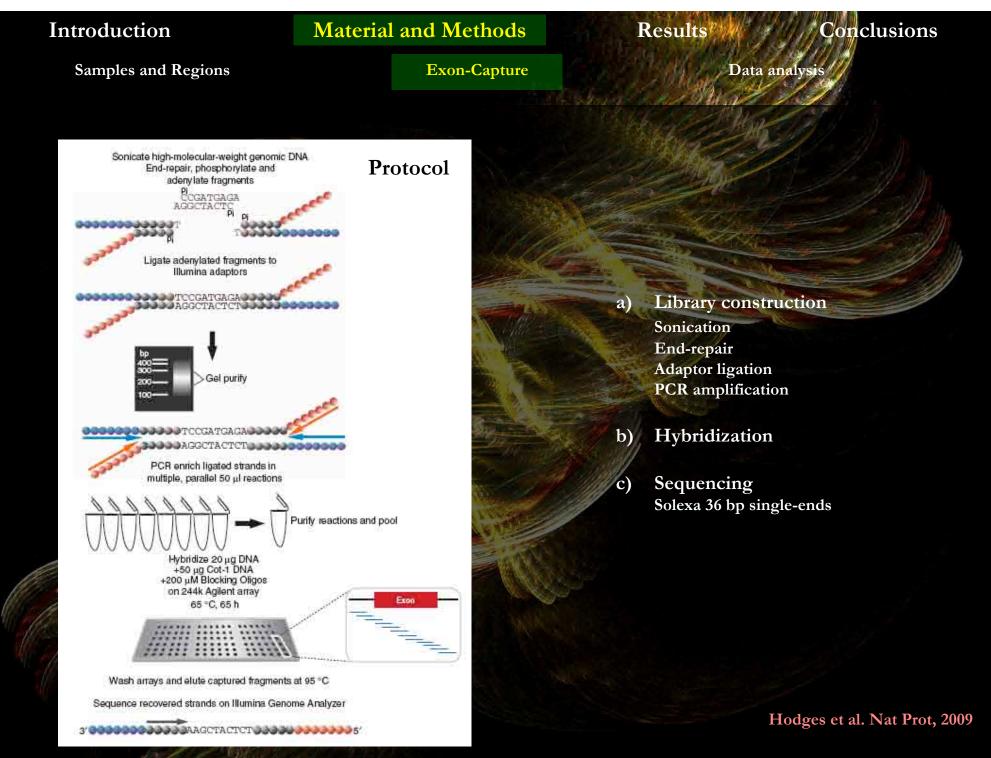
Samples and Regions

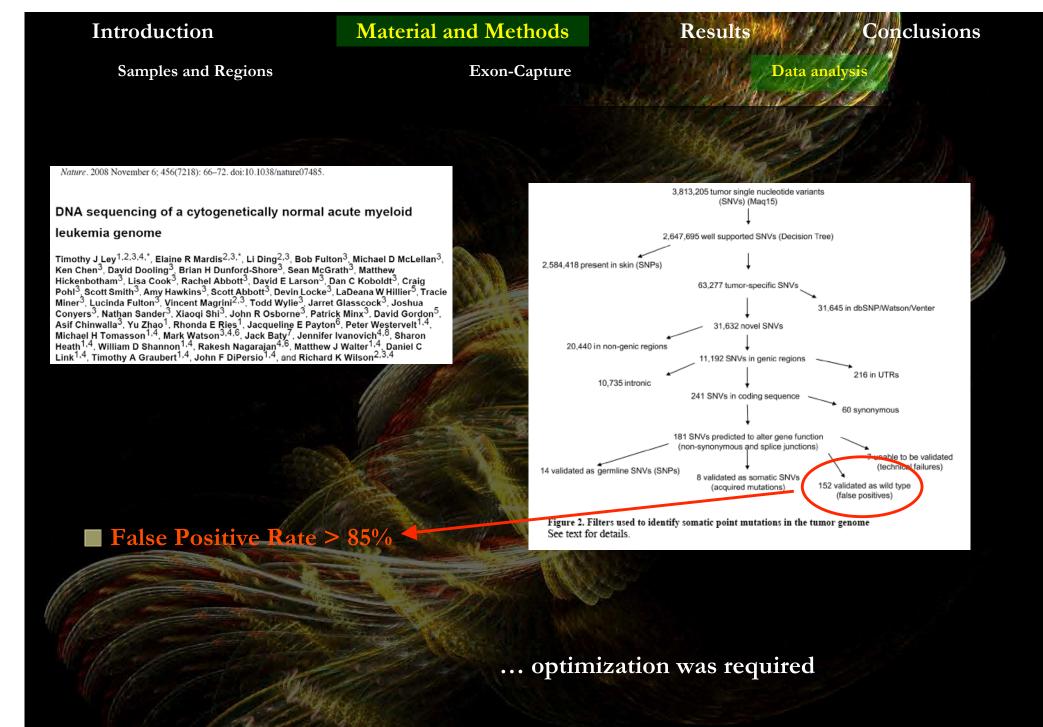
Exon-Capture

Data analysis

Samples

• DNA from 20 affected members from 9 different *non-BRCA1/2* families were collected At least two individuals per family to allow intrafamilial comparison


• DNA from 4 individuals from control population were pooled Many advantages related to sample homogeneity and heterozigosity


Regions

• Region on chr 3: 10 Mb

• Region on chr 6: 6 Mb

• Coding Regions from 159 genes ~ 400.000 bp

Introduction

Material and Methods

Samples and Regions

- Very informative output file

quality in variant alleles

quality in reference alleles

Alignment with SOAP v 1.0

- Indels identification in single-ends data

Scores

 $score = \left(\frac{X_V}{X_P}\right) \times 100$

Quality Score

 X_{y} = Average value of base-calling

Xr = Average value of base-calling

Depth Score

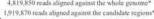
Xy = Depth value for variant allele

Xr = Depth value for reference allele

Exon-Capture

Results

Data analy


Conclusions

Depth output file

Analysis Pipeline

Illumina Pipeline Output File 5,137,692 reads*

SOAP alignment 4,819,850 reads aligned against the whole genome 919.870 reads aligned against the candidate regions

SNP-caller DS > 50 and depth > 20

Indel variants output file 1 Indels*

3) Normalization of the median

individual and the control pool:

depth in those regions putatively altered

individual:

Coverage (CGH-like analysis)

4) Calculation of the log-ratio (Is) between every affected

5) Estimation of the upper and lower threshold per affected

 $I_{i} = \log 2 \frac{1}{D_{i}c_{i}}$

 $h = \overline{D}s + StD = +0.5$ $l_1 \equiv \overline{D}_2 - StD_2 - 0.5$

6) Calculation of the correlation between mean and median of the

Rosa-Rosa et al. Submitting

Variants Filtering Process

1) Comparison to control pool data 2) Comparison within the members of the same family

Ensembl Database - PerIAPI tools

SNP variants output file

153 SNPs*

Candidate Variants Indel variants

Validation via

0 Indels*

3) Non-described variants Described variants

4) Removing Intronic consequences 5) No-Homology confirmation

Scores always highlighted the relationship

High throughput sequencing analysis of linkage assay-identified candidate regions in familial breast cancer: methods, analysis pipeline and troubleshooting

Introduction M	laterial and Methods	Results Co	nclusions
Reads, coverage and depth	Variants	Coverage study	

Table 1

				Number of sequ	ences	Dep	th	
Chromosome	Family	Individual	Total	Aligned to whole genome (%*)	Aligned to candidate regions (%**)	Coverage in %	Mean	Median
		07S722	3,123,937	2,956,483 (94.64)	1,186,611 (40.14)	98.04	26	25
	27	07S723	4,922,157	4,538,392 (92.20)	1,518,625 (33.46)	98.43	29	29
	21	07S724	4,183,568	3,954,837 (94.53)	1,515,614 (38.32)	97.89	28	26
		07S725	2,952,969	2,839,271 (96.15)	1,168,679 (41.16)	97.11	24	22
3	60	06-240	2,652,926	2,580,914 (97.29)	882,837 (34.21)	97.96	22	20
5	00	96-652	5,934,453	4,737,175 (79.82)	1,670,157 (35.26)	98.15	28	24
	531	I-1408	12,228,047	11,188,204 (91.50)	4,694,871 (41.96)	99.07	57	48
	331	I-904	4,293,087	3,585,982 (83.53)	1,531,322 (42.70)	97.50	30	22
	713	07S635	7,568,672	7,442,938 (98.34)	2,793,056 (37.53)	99.11	45	44
	/13	07S636	7,160,552	6,889,152 (96.21)	2,574,119 (37.36)	98.94	43	42
	11	04-168	5,734,052	5,599,100 (97.65)	2,459,740 (43.93)	98.57	43	42
		96-265	6,240,024	6,012,522 (96.35)	2,642,942 (43.96)	98.22	35	32
	40	07S576	2,006,661	1,667,648 (83.11)	779,723 (46.76)	97.11	18	17
	40	07S581	4,016,214	3,618,178 (90.09)	1,568,060 (43.34)	97.66	25	23
6	929	I-1627	5,811,276	5,665,182 (97.49)	2,311,149 (40.80)	98.52	33	32
0	525	I-3345	2,602,250	2,554,051 (98.15)	1,059,131 (41.47)	98.27	23	23
	990	I-1927	8,134,956	7,903,785 (97.16)	3,029,994 (38.34)	98.84	51	50
	330	I-1928	7,922,500	7,590,406 (95.81)	2,817,358 (37.12)	99.02	49	48
	1125	I-2033	2,747,911	2,666,280 (97.03)	1,105,059 (41.45)	97.87	24	23
	1125	I-4347	2,517,619	2,406,505 (95.59)	1,088,350 (45.23)	97.74	24	24
		TOTAL	102.753.831	96,397,005 (93.81)	38,397,397 (39.83)			
		Average Aff	5,137,692	4,819,850 (93.63)	1,919,870 (40.22)	98.20	33	31
		Control pool	22,390,251	18,221,565 (81.38)	7,438,610 (40.82)	99.33	111	98
		Average All	5,214,336	4,775,773 (91.58)	1,909,833 (39.99)	98.25	37	34

Introduction Mater		nd Methods	Results.	Conclusions
Reads, coverage a	and depth	Variants	Covera	age study
			A COM	

Table 2

Chr	Family	Individual	SNPs	After control	Shared by family	Non- described	Consequences	Exonic	Candidate SNPs (%)*
		07S722	102	22	Tanniy	described			SIN 3 (76)
		07S723	93	9	0				
	27	07S724	120	32	0	0	0	0	0 (0.00)
		07S725	84	19					
3	60	06-240	78	19	10	5	4	3	1 (10.00)
3	00	96-652	96	26		5	4	2	1 (10.00)
	531	I-1408	95	20	5	2	1	1	0 (0.00)
	001	I-904	109	38	5	2	I	T	0 (0.00)
	713	07S635	110	38	12	5	6	3	1 (8.33)
	710	07S636	111	30	12	5	0	5	1 (0.55)
	11	96_265	179	53	15	3	8	2	0 (0.00)
		04_168	182	52		-	ç	-	0 (0.00)
	40	07S581	226	89	43	11	29	22	2 (4.65)
		07S576	257	140			= ,		= (
6	929	I_3345	175	45	18	5	13	10	0 (0.00)
		I_1627	198	66	-	-	-		- ()
	990	I_1927	246	96	51	17	56	23	5 (9.80)
		I_1928	231	82					()
	1125	I_4347	185	53	19	3	10	0	0 (0.00)
		I_2033	181	66					. ,
		Average	153	50	19	6	14	7	1 (3.62)

Introduction	Material an	nd Methods	Results.	Con clusions
Reads, coverage ar	nd depth	Variants	Cove	trage study

Table 3

Chr	Family	Position (hg18)	Gen	Referenc e	Variant	QS ^a	DS ^b	Consequence ^c		Consequence ^c		Consequence ^c		Alamuth prediction ^d	Gene function
	60	161301596	AC026118.17	А	Т	91/91	56/57	NCG		-	pseudoge n e				
3	713	170284589	EVI1	А	G	95/94	128/100	3UTR		-	hematopoietic proliferation protein, related to acute myeloid leukemi a				
		151203125	PLEKHG1	С	Т	103/98	133/146	SYN	S1186S	-	unknown				
	40	151713613	AKAP12	С	Т	98/96	185/183	SYN	P700P	-	scaffold protein in signal transduction, is a cell growth-related protei n				
		146761618	GRM1	С	Т	101/96	101/81	NSYN	R584C	AFF	metabotropic glutamate receptor				
6	990	150087915	NUP43	Т	С	95/93	101/97	3UTR		-	part of a nuclear pore complex, mediating bidirectional transport of macromolecules between the cytoplasm and nucleus				
		150205485	LRP11	Т	С	101/101	74/95	NSYN	I312V	N D B	unknown				
		151564223	AL451072.14	G	Α	93/98	119/116	NCG		-	non-coding R N A				

Confirmation rate = 0.875

Material and Methods

Results

Results

Reads, coverage and depth

Variants

Coverage study

Conclusions

Table 4

Chr	Fam	Ted	Mann	Ct De v		
Chr	Fam	Ind	Mean	St De v	Upper	Lower
		07S722	-0.13	0.75	1.12	-1.38
	27	07S723	-0.04	0.31	0.77	-0.86
	27	07S724	-0.07	0.35	0.77	-0.92
		07S725	-0.10	0.43	0.82	-1.03
3	60	06-240	-0.01	0.40	0.89	-0.91
3	60	69-652	0.00	0.59	1.10	-1.09
	E 2 1	I-1408	0.05	0.53	1.08	-0.97
	531	I-904	-0.31	1.83	2.02	-2.64
	713	07S635	-0.04	0.62	1.08	-1.16
	/13	07S636	-0.04	0.45	0.92	-0.99
	1 1	04-168	-0.09	0.35	0.76	-0.94
	11	96-265	-0.02	0.36	0.83	-0.88
	4.0	07S576	-0.05	0.73	1.18	-1.29
	40	07S581	0.00	0.41	0.91	-0.91
~		I-1627	-0.02	0.36	0.83	-0.88
6	929	I-334 5	-0.09	0.36	0.77	-0.95
	0.0.0	I-1927	-0.08	0.80	1.22	-1.38
	990	I-1928	-0.03	0.63	1.10	-1.16
	1125	I-203 3	-0.03	0.44	0.91	-0.97
	1125	I-434 7	-0.09	0.39	0.80	-0.98
		Globa l	-0.06	0.55	0.99	-1.11

No bias in global coverage

In summary

• ... we designed an analysis pipeline for mutational screening via SOAP v1.0 that resulted in a low false positive rate with a low probability of discarding real positive variants

• ... we identified seven variants that passed all the different filters to be considered candidates, however further functional studies are required to assess whether any of them is an actual causal mutation or a polymorphism

• ... we regard the present strategy as a valid second step after linkage studies in order to identify candidate high penetrance genes

Acknowledgements

Human Genetics Group - CNIO

Javier Benitez

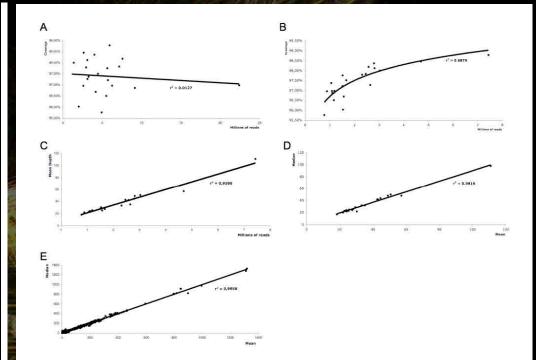
Javier Gracia Guillermo Pita

Irving Cancer Research

Greg Hannon

Emily Hodges

CSHL


Michelle Rooks

Jose Silva

Supplementary Information

Family	Individual	Chromosome	Position	Gen	Reference allele	Variant allele	Genotype	QS	DS	Consequence	Global Depth	
	06_240	3	162442989	NMD3	G	т	G/T	80	50	ESSENTIAL_SPLICE_SITE	9	
	06_240	3	166262966	SI	С	Α	C/A	73	50	ESSENTIAL_SPLICE_SITE	3	
	06_240	3	168534468	ZBBX	С	Α	C/A	81	50	ESSENTIAL_SPLICE_SITE	3	
60	06_240	6	146281062	SHPRH	С	А	C/A	88	100	ESSENTIAL_SPLICE_SITE	2	
00	06_240	6	147039141	C6orf103	G	т	G/T	77	57	ESSENTIAL_SPLICE_SITE	11	
	06_240	6	147625118	STXBP5	G	т	G/T	79	66	ESSENTIAL_SPLICE_SITE	10	
	06_240	6	147872067	SAMD5	С	т	C/T	77	50	STOP_GAINED	3	
	06_240	6	151228808	MTHFD1L	С	Т	C/T	105	50	STOP_GAINED	3	
	I_904	3	171238698	GPR160	G	т	G/T	110	50	ESSENTIAL_SPLICE_SITE	3	
531	I_904	6	148706054	SASH1	Т	С	T/C	59	100	ESSENTIAL_SPLICE_SITE	2	
	I_904	6	151857015	C6orf97	т	G	T/G	76	50	ESSENTIAL_SPLICE_SITE	3	
	I_904	3	161426731	AC112641.3	С	A	C/A	117	100	STOP_GAINED	2	
	07S722	3	161601302	SMC4	A	С	A/C	107	50	ESSENTIAL_SPLICE_SITE	3	
	07S722	3	161601303	SMC4	G	С	G/C	92	50	ESSENTIAL_SPLICE_SITE	3	
	07S722	3	162305379	B3GALNT1	т	G	T/G	54	50	ESSENTIAL_SPLICE_SITE	6	
	07S723	3	162303593	B3GALNT1	Α	G	A/G	56	100	ESSENTIAL_SPLICE_SITE	2	
	07S723	3	166263999	SI	G	A	G/A	102	50	STOP_GAINED	3	
	07S725	3	161483097	IFT80	Т	A	T/A	65	50	ESSENTIAL_SPLICE_SITE	3	
27	07S725	3	166197219	SI	С	A	C/A	72	50	ESSENTIAL_SPLICE_SITE	3	
	07S725	3	171460450	PRKCI	G	т	G/T	89	50	ESSENTIAL_SPLICE_SITE	6	
	07S725	6	146177430	FBXO30	A	т	A/T	59	50	ESSENTIAL_SPLICE_SITE	3	
	07S725	6	146308467	SHPRH	С	A	C/A	75	53	ESSENTIAL_SPLICE_SITE	23	
	07S725	6	150001390	KATNA1	С	A	C/A	80	57	ESSENTIAL_SPLICE_SITE	11	
	07S725	3	168566393	ZBBX	G	Т	G/T	81	133	STOP_GAINED	7	
	07S725	3	169247461	GOLIM4	С	A	C/A	78	50	STOP_GAINED	3	
	07S725	6	147007611	C6orf103	G	Т	G/T	74	50	STOP_GAINED	3	
11	96_265	3	161477961	IFT80	С	A	C/A	57	50	ESSENTIAL_SPLICE_SITE	3	
	07S576	3	166247495	SI	С	Α	C/A	71	100	ESSENTIAL_SPLICE_SITE	8	
	07S576	3	168534468	ZBBX	С	Α	C/A	129	50	ESSENTIAL_SPLICE_SITE	3	
	07S576	6	149680846	MAP3K7IP2	Т	G	T/G	66	50	ESSENTIAL_SPLICE_SITE	3	
40	07S576	6	151228880	MTHFD1L	т	G	T/G	107	100	ESSENTIAL_SPLICE_SITE	2	
	07S576	3	168728494	WDR49	G	т	G/T	56	50	STOP_GAINED	3	
	07S581	6	150251497	RAET1E	С	A	C/A	108	100	ESSENTIAL_SPLICE_SITE	2	
	07S581	3	168560381	ZBBX	С	A	C/A	130	100	STOP_GAINED	2	
	07S581	6	150506161	PPP1R14C	С	A	C/A	68	50	STOP_GAINED	3	
990	I_1927	6	149680846	MAP3K7IP2	Т	G	T/G	85	50	ESSENTIAL_SPLICE_SITE	3	
	I_1927	6	151754247	ZBTB2	С	A	C/A	88	50	ESSENTIAL_SPLICE_SITE	3	
	I_2033	6	147625118	STXBP5	G	Т	G/T	68	66	ESSENTIAL_SPLICE_SITE	5	
	I_2033	6	147672912	STXBP5	G	Т	G/T	68	100	ESSENTIAL_SPLICE_SITE	4	
1125	I_4347	3	161736380	KPNA4	С	A	C/A	69	50	ESSENTIAL_SPLICE_SITE	4	
	I_4347	3	166247495	SI	С	A	C/A	73	50	ESSENTIAL_SPLICE_SITE	6	
	I_4347	6	147677092	STXBP5	G	Т	G/T	59	100	ESSENTIAL_SPLICE_SITE	2	
$\mathcal{H}_{\mathcal{F}}$	1 14				A da	K.L.		Č.	A		τ.	
Family	Individual	Chromosome	Position (hg18)	Gen	Reference alle I e	Variant alle I e	Genotype	QS	DS	Consequence	Global Depti	
		3	160965047	SCHIP1	С	Α	C/A	98	26	STOP_GAINED	34	
		3	166192869	s I	С	А	C/A	71	26	STOP_GAINED	19	
2 1	05 98 0	6	146797238	GRM1	С	А	C/A	65	33	STOP_GAINED	4	
		6	151754247		С	A	C/A	69	25	ESSENTIAL_SPLICE_SITE	6	
		6	151754247		c	т	C/T	74	25	ESSENTIAL_SPLICE_SITE	6	
		ÿ	101104241	LOTOL			0/1				Ŭ	

Supplementary Figure 1: Correlations.

The coverage along the candidate regions was very high (98% on average) and no correlation between it and the number of sequences obtained per individual was observed (A), although we observed a logarithmic trend when the number of sequences aligned to the candidate regions was used (B). On the other hand, a strong correlation between the number of sequences aligned to the candidate coding regions and the mean depth was observed in our dataset (C). Failures in the capture step were discarded since high correlations between the global mean and the global median of the depth per individual (D) and between the mean and the median of the depth in putatively altered 15-bp regions for all the individuals (E) were observed (see text for details).